New Discoveries, New Hope

The IPC project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 826121.

Facts

- **Budget**: €15.1 Million
- **Consortium**: 21 Partners
- **Duration**: 48 Months (01/2019 - 12/2022)

Contact

Technical Lead

Maria Rodriguez-Martinez
IBM Research – Zurich
Säumerstrasse 4
8803 Rüschlikon
Switzerland
MRM@zurich.ibm.com

Scientific Lead

Hans Lehrach
Max-Planck-Institute for Molecular Genetics
Ihnestraße 63-73
14195 Berlin
Germany
lehrach@molgen.mpg.de

Project Coordinator

Klaus-Michael Koch
koordination@ipc.project.eu

Partners

1. TECHNIKON
 Technikon Forschungs- und Planungsgesellschaft mbH
 Austria (Villach)
2. IBM Research
 IBM Research GmbH
 Switzerland (Rueschlikon)
3. MPiMM
 Max-Planck-gesellschaft zur Förderung der Wissenschaften
 Germany (Berlin)
4. Institut Curie
 France (Paris)
5. Technische Universität Darmstadt
 Germany (Darmstadt)
6. Università degli Studi di Napoli Federico II
 Italy (Naples)
7. Universiteit Gent
 Belgium (Ghent)
8. Germans Trias i Pujol Research Institute (IGTP)
 Spain (Barcelona)
9. Barcelona Supercomputing Center
 Spain (Barcelona)
10. Instituto de Medicina Molecular
 Portugal (Lisbon)
11. Deutsches Krebsforschungszentrum Heidelberg
 Germany (Heidelberg)
12. Academisch Medisch Centrum
 The Netherlands (Amsterdam)
13. Prinses Maxima Centrum voor Kinder-oncoloogie
 The Netherlands (Utrecht)
14. Universitätsklinikum Heidelberg
 Germany (Heidelberg)
15. Università degli Studi di Napoli Federico II
 Italy (Naples)
16. Travis County Health District
 USA (Austin, Texas)
17. Children’s Medical Research Institute
 Australia (Westmead, NSW)
18. Children’s Hospital of Philadelphia
 USA (Philadelphia, Pennsylvania)
19. Children’s Medical Research Institute
 Australia (Westmead, NSW)
20. Alacris Theranostics GmbH
 Germany (Berlin)
21. Universitat Zürich
 Switzerland (Zurich)
22. Ludwig-Maximilians-Universität München
 Germany (Munich)
23. Consiglio nazionale delle ricerche
 Italy (Rome)
24. Baylor College of Medicine
 USA (Houston, Texas)
25. Universitätsklinikum Heidelberg
 Germany (Heidelberg)
26. Technikons Forschungs- und Planungsgesellschaft mbH
 Austria (Villach)

Klaus-Michael Koch
koordination@ipc.project.eu

Contact

Project Coordinator

Klaus-Michael Koch
koordination@ipc.project.eu

New Discoveries, New Hope

<table>
<thead>
<tr>
<th>IPC</th>
<th>Funding Agency</th>
<th>Duration</th>
<th>Partners</th>
<th>Budget</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPC</td>
<td>European Union’s Horizon 2020</td>
<td>48 Months (01/2019 - 12/2022)</td>
<td>21</td>
<td>€15.1 Million</td>
</tr>
</tbody>
</table>
Cancer in children is rare, but when it happens, clinically prescribed treatment options are not always as efficient as one would hope. Of those patients who are successfully treated, a substantial proportion suffers serious and long-term health consequences from the intensive therapies they underwent.

Cancer can be difficult to treat effectively because cancer cells undergo many random changes which means that each cancer has an essentially unique combination of molecular characteristics. To address this problem, it is important to develop ways of specifically tailoring treatment combinations for the molecular profile of each individual cancer, to maximize cures and to minimize short and long-term treatment side-effects. That is the goal of iPC.

Motivation

Tumours differ broadly across patients and show large molecular heterogeneity; each one being composed of cells with varied expressions. Consequently, similar tumour types, and even cells within the same tumour, show different outcomes and responses to the same therapy. On average, only a quarter of oncology patients respond to the drugs they receive. Worse yet, chemotherapy could have severe side effects. This is of particular importance for childhood cancers because the treatment itself could be the culprit for developmental disorders and secondary tumours.

Vision

The project team will focus on identifying effective personalised treatment options for paediatric cancers.

A comprehensive computational effort to combine knowledge base, machine learning, and mechanistic models to predict optimal standard and experimental therapies for each child will be proposed. We will produce, assemble, standardize, and harmonize high quality, multidisciplinary data and leverage the potential of big data and high-performance computing for the personalised treatments of European citizens.

iPC will address the critical need for personalized medicine for children with cancer, while marking a valuable contribution to the digitalization of clinical workflows, thus supporting the European Digital Single Market.

Mission & Objectives

The goal of the iPC project is to collect, standardize and harmonize existing clinical knowledge and medical data and, with the help of artificial intelligence, create treatment models for patients. Armed with these treatment models, scientists will then test them on virtual patients to evaluate treatment efficacy and toxicity, thus improving both patient survival and their quality of life.

To accomplish these goals, iPC has assembled an interdisciplinary team consisting of basic, translational, and clinical researchers - all amongst the leaders in their respective fields - and established strong relationships with European Centres of Excellence, patient organizations, and clinical trials which focus on personalised medicine for our proposed case studies. Fundamentally, iPC will address the critical need for personalised medicine for children with cancer, while making a valuable contribution to the digitalization of clinical workflows, and support the European Digital Single Market Strategy.