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Executive Summary 

 

Synthetic data generation is emerging as a dominant solution for precision medicine as it enables to 
address critical challenges such as yielding the data volumes needed to deliver accurate results and 
complying with increasingly restrictive privacy regulations, both demanded in paediatric cancer 
research. In this deliverable, we report on the development of an explainable Variational 
AutoEnconder (VAE) for synthetic transcriptomics data generation in medulloblastoma, a childhood 
brain tumour. The model can be used to augment and interpolate available data with synthetic 
instances, which are automatically annotated with confidence scores to assess the reliability of 
augmented data points and interpolated trajectories. The model is transparent as it is able to match 
the learned latent variables with distinct gene expression patterns. We leverage both the synthetic 
data generation and explainability features of our model to study the gene expression characteristics 
of the four medulloblastoma subgroups (WNT, SHH, G3, G4) and, in particular, that underlying the 
unknown relationship between G3 and G4 subgroups. Additionally, we generated a datasets of 4,000 
high fidelity synthetic medulloblastoma expression profiles encompassing all subgroups. The draft 
of the unpublished article resulted from this work and the synthetic dataset that we generated are 
available at the iPC Nextcloud public repository https://data.ipc-
project.bsc.es/s/sqc3WWQTLgC8iAb. The model can be adapted to other paediatric cancers and 
the resulting synthetic datasets be used for testing and training patient, cancer, and drug models in 
other workpackages of the iPC project. 

 

https://data.ipc-project.bsc.es/s/sqc3WWQTLgC8iAb
https://data.ipc-project.bsc.es/s/sqc3WWQTLgC8iAb
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Chapter 1 Synthetic data generation in paediatric 

cancer research 

Despite the tremendous medical progress over the last decades, many diseases still lack effective 
interventions and, in many cases, these are not targeted to the individual, leading to unexpected or 
unwanted consequences with significant impact on healthcare costs. Paediatric oncology is not 
exempted from this issue [1], facing challenges such as unfavourable or undesired treatment 
outcomes (e.g., adverse side effects, unsuccessful results, relapse) among others. Precision 
medicine, a.k.a. personalised medicine, holds the promise to help address these challenges paving 
the way to next-generation medicine [2], especially in paediatric oncology. Precision medicine is 
defined as a patient-centred medical model that uses individuals’ phenotypes and genotypes (e.g. 
molecular profiling, clinical and lifestyle information) to deliver timely and targeted preventive and 
therapeutic solutions [3]. In paediatric oncology, several approaches to precision medicine have 
been attempted in the last decades, including specific clinical sequencing studies [4] and clinical 
trials [5,6] as well as specific strategies for managing medical registries [7] and treatment access [8].  

An emerging aspect of precision medicine is the uptake of Artificial Intelligence (AI) solutions able to 
reveal patterns to predict intervention outcomes for individual patients as well as leverage and 
enhance the digital transformation of healthcare. Among AI applications for precision medicine, 
biomedical data synthesis is recognized as a fundamental tool to realize actionable personalisation, 
although quality standards to guarantee operational validity still need to improve [9]. Typically, 
synthetic data is produced through computational models generating simulations that approximate 
real-world data. 

Synthetic data generation is emerging as a dominant AI solution for personalised medicine as it 
enables to address several critical challenges, such as creating the data volumes needed to deliver 
accurate results, correcting possible biases engrained in real-world data, and complying with 
increasingly restrictive privacy regulations. These challenges are of utmost importance for precision 
medicine and tightly intertwined, especially considering the need of data augmentation and privacy 
preservation for those groups of individuals that are underrepresented in the current landscape of 
cancer data due to rarity of condition, such as rare paediatric tumours, or discrimination, such as 
specific demographic strata (age, sex, gender, race) [10]. 

Among several approaches, deep generative models, such as Variational Autoencoders (VAE) [11], 
which is an unsupervised representation learning technique, is largely used for synthetic data 
generation. The idea behind a generative model, such as VAE, is that a latent (unseen) process 
generates the observed data and a few explanatory factors of its variation, called generative factors, 
can be identified. The disentangled latent space identified by VAE, which is expected to capture 
human-understandable dimensions of variation of the data, can be used to generate explainable 
synthetic instance and even navigated to infer probabilistic trajectories, as recently proposed for 
single-cell transcriptomics analysis [12]. 

In this deliverable, we describe a VAE that BSC has developed and applied to the study of 
medulloblastoma, an aggressive childhood brain tumour. Both the draft of the unpublished article 
reporting on this work and the medulloblastoma synthetic datasets that have been generated are 
available at the iPC Nextcloud public repository https://data.ipc-
project.bsc.es/s/sqc3WWQTLgC8iAb. Specifically, the code of the VAE is available at 
https://github.com/bsc-life/Explainable_Synthetic_Data_Generation_Medulloblastoma. 

https://data.ipc-project.bsc.es/s/sqc3WWQTLgC8iAb
https://data.ipc-project.bsc.es/s/sqc3WWQTLgC8iAb
https://github.com/bsc-life/Explainable_Synthetic_Data_Generation_Medulloblastoma
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Chapter 2 An explainable deep generative model for 

paediatric cancer research 

2.1 Variational AutoEncoder (VAE) 

A generative model aims to model the hidden process that generated the observed data by 
identifying explanatory factors of its variation, called generative factors. The obtained generative 
process can then be used to generate reliable synthetic instances. The Variational AutoEncoder 
(VAE) [13] models such generative process in a probabilistic way by relying on a lower-dimensional 
representation of the data, called latent space, whose dimensions, or latent variables, are described 
as known probability distributions and are assumed to map to the generative factors. For ease of 
reference, we denote the latent factor distributions describing the latent space as encoding vectors.  

VAE consists of an encoder, which encodes the generative factors of the data into the latent space, 
and a decoder, which samples the latent space to generate new synthetic instances (Figure 1). 
Additionally, a latent space is called disentangled if each of its latent factors (or sets of covarying 
latent factors) maps to a specific generative factor. Disentanglement is key to model explainability 
as it is supposed to capture independent dimensions of variation of the data that are expected to 
correspond to human-understandable concepts or attributes [14]. However, if the generative factors 
are unknown, a quantitative evaluation of disentanglement quality is challenging and, indeed, it is an 
important open research direction [15]. 

 

 

Figure 1: Variational autoencoder for synthetic data generation. The diagram depicts the encoding of a real 
gene expression profile into the latent space and the decoding of a synthetic gene expression profile from it. 

 

2.2 Data augmentation and interpolation 

We developed a VAE that exhibits two types of data generation processes: the data augmentation 
and the data interpolation (Figure 2). Data augmentation creates new data by using randomly chosen 
encoding vectors allowing increasing the size of the available data. Data interpolation creates new 
data by traversing the latent space from a source to a destination allowing the study of transitions or 
intermediate states in the data. Both types of data synthesis are equipped with confidence scores 
that assess the reliability of the generated synthetic instances based on the proximity to the training 
data points. Additional details on data pre-processing, model architecture, training scheme, and 
evaluation metrics are provided in the draft of the unpublished paper that is available at the iPC 
Nextcloud public repository: https://data.ipc-project.bsc.es/s/sqc3WWQTLgC8iAb. 

 

https://data.ipc-project.bsc.es/s/sqc3WWQTLgC8iAb
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Figure 2: Synthetic data generation by augmentation and interpolation. Real expression profiles are 
represented in two dimensions as yellow dots. Purple dots represent synthetic expression profiles generated 

by augmentation targeting a real expression profile (circled in purple). Blue squares represent synthetic 
expression profiles generated by interpolation between two real expression profiles (circled in blue). 

 

2.3 Model explainability 

To explain how and why the VAE is generating synthetic data, it is crucial not only to identify the 
most relevant latent variables identified by the model but also to puzzle out how it is building them 
directly from the data. This task represents a depth step into the explainability of VAE. To do so, we 
propose an explainability approach based on a proxy that leads to the selection of subsets of genes 
driving the structure of medulloblastoma subgroups (Figure 3). The proxy consists of two steps. In 
the first step, we classify the four medulloblastoma subgroups on the latent space using XGBoost 
[16], a gradient boosting algorithm on decision trees. This enables the identification of the most 
relevant latent variables. In the second step, we project this information onto the original input data 
so to identify the genes that influence the most those latent variables. This attempt of spotting the 
most relevant genes by proxy is based on the Shapley Additive Explanations (SHAP) algorithm [17]. 
In particular, we use two concatenated SHAP-based techniques, namely the SHAP Tree Explainer, 
used to analyze the XGBoost employed in the latent space, and the DeepLIFT SHAP, used to 
analyze the encoder network that compresses the input data into that latent space. 
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Figure 3: The more relevant genes for accurate synthetic data generation are found by proxy using a SHAP-
based approach. The SHAP Tree Explainer technique applied to the XGBoost classifier enables to detect the 

latent variables that are more relevant to the classification of the four medulloblastoma subgroups (WNT, 
SHH, G3, G4). Hereafter, the DeepLIFT SHAP technique applied to the encoder networks enables to detect 

the genes that are more relevant in the definition of those latent variables. 
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Chapter 3 Application to medulloblastoma 

3.1 Expression signatures of synthetic data generation in 
medulloblastoma  

Medulloblastoma is an embryonal tumour that develops in the posterior fossa, is among the most 
common malignant childhood CNS tumours [18] with an annual incidence of about 5 cases per 1 
million individuals [19]. Four distinct medulloblastoma subgroups have been identified (Wingless 
[WNT], Sonic hedgehog [SHH], Group 3 [G3], and Group 4 [G4]), although the subgroups G3 and 
G4 are the less characterized molecularly [20]. 

For this deliverable, BSC produced 4,000 synthetic gene expression profiles of medulloblastoma by 
training and testing a VAE using the two largest microarray datasets of medulloblastoma stored in 
the R2 platform [21] with Gene Expression Omnibus (GEO) accession identifiers GSE85217 [22] 
(18,479 genes x 763 observations) and GSE37382 [23] (18,473 genes x 285 observations). Due to 
its proportions and independence, the two datasets were used as training and test sets, respectively. 
The synthetic dataset is included in the iPC Nextcloud public repository: https://data.ipc-
project.bsc.es/s/sqc3WWQTLgC8iAb. 

By applying our explainability pipeline (see section 2.3 “Model explainability”), we identified 881 
genes that contribute the most to the latent variables that best classify among all the subgroups of 
medulloblastoma. In all of them, a structure consisting of two clusters of up-regulated and down-
regulated genes can be appreciated, representing a distinct gene expression signature of each 
medulloblastoma subgroup (Figure 4). 

  

Figure 4: Clustermap of SHH (a), WNT (b), G3 (c) and G4 (d) subgroups based on the 881 genes that 
contribute the most to the latent variables that better classify between all the subgroups of the 

medulloblastoma. 

 

  

https://data.ipc-project.bsc.es/s/sqc3WWQTLgC8iAb
https://data.ipc-project.bsc.es/s/sqc3WWQTLgC8iAb
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3.2 The G3-G4 subgroup of medulloblastoma 

A number of computational [24,25] and experimental [26,27] studies have pointed out the possible 
existence of an unknown relationship between G3 and G4, two of the most frequent medulloblastoma 
subgroups, with the poorest prognosis and less characterized molecular alterations. In particular, G4 
has been reported to be the more heterogeneous among the four subgroups with molecular markers 
being shared with G3 and SHH [28]. A marked overlapping area between G3 and G4 can be 
appreciated in the visualization of the distribution of the medulloblastoma expression profiles (Figure 
5). Studying this overlapping area could shed light on actionable insights to improve therapeutic 
strategies and survival rates of both G3 and G4, for which targeted therapies have not been identified 
yet or only suggested. For this reason, we propose to leverage the generative power of the VAE and 
our explainability pipeline to study this G3-G4 relationship. 

 

Figure 5: UMAP visualization of the data highlighting the boundary points (labelled as "Transition group") 
between G3 and G4 in the training dataset (GSE85217). 

 

To characterize the overlap between G3 and G4 subgroups, we build a k-nearest neighbours graph 
(k-NNG) based on the G3 and G4 observations. Boundary points are defined as the points of a 
subgroup that have points of the other subgroup among their nearest neighbours. By varying the k 
value of the k-NNG, the amount of boundary points varies. The lower the k value, the more restricted 
is the set of points considered as boundary points. 

Boundary points, henceforth called Transition group, correspond to observations located in the 
overlapping region between G3 and G4 subgroups. As those observations lay in a peculiar patch of 
the latent space, we expect them to have intermediate gene expression levels compared to the 
remaining G3 and G4 observations. To test this hypothesis, we leverage the data augmentation 
feature of our VAE to generate synthetic instances uniformly across the G3 and G4 area and vary 
the k value to identify genes that are differential expressed in G3, G4 and the Transition group. The 
optimized condition corresponds to parameter k = 3. 

We perform the non-parametric Kruskal-Wallis and Dunn's statistical tests with Bonferroni correction 
for multiple comparison to detect those genes of the 881 previously selected that show a statistically 
relevant difference in expression among G3, G4 and the Transition group (Figure 6). We obtain a 
list of 26 genes, namely ALX1, BCAR3, C21orf90, CALB1, CCDC141, CCNA1, CDH4, CRABP1, 
DLX5, DUSP5P, DYRK4, EDA2R, FAM183A, FCN3, FLJ37786, GFRA1, HSPA1L, IFI44, IRX3, 
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KLF8, LOC391169, LOC440173, LRRC4C, MTUS2, NEUROG2, PARP8, SEPT12, SKAP2, 
SLC13A4, SLC30A3, SLFN13, SREBF1, SULT1A2, TMEM220, TTN and VWA5A. 

 

 

 

Figure 6: VWA5A, HSPA1L, FLJ37786 and SULT1A2 are illustrative genes with statistically significant 
differences in their expression levels among G3, G4 and the Transition Group. 
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Chapter 4 Summary and Conclusion

An emerging aspect of precision medicine, especially in the domain of paediatric cancer research, 
is the uptake of AI solutions able to reveal patterns to predict personalised intervention outcomes for 
subgroups of patients. Among the AI applications for paediatric oncology, data synthesis is 
recognized as a fundamental approach to realize actionable personalisation, especially deep 
generative models, such as Variational AutoEncoder (VAE), which is an unsupervised 
representation learning technique that is largely used for synthetic data generation in many areas.  

In this deliverable, we developed an explainable VAE for synthetic transcriptomics data generation 
in medulloblastoma, a childhood brain tumour, trained and tested using the largest microarray 
datasets of medulloblastoma stored in the R2 platform. We used the model to generate a datasets 
of 4,000 high fidelity synthetic medulloblastoma expression profiles encompassing all four 
medulloblastoma subgroups (WNT, SHH, G3, G4), identifying 881 genes that contribute the most to 
the latent variables that better classify them. We also leveraged the model to study the unknown 
relationship between G3 and G4 subgroups, identifying 26 genes that show a statistically relevant 
difference in expression among G3, G4, and a potential intermediate subgroup. 

Our VAE can be adapted to other paediatric cancers and the resulting synthetic datasets be used 
for testing and training patient, cancer, and drug models in other workpackages of the iPC project. 
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