
 

The project iPC has received funding from the European Union’s Horizon 2020 research and innovation 
programme under grant agreement No 826121. 

   

 

 

 

D3.2 
Adaptation of MelanomaMine and LiMTox to the 
analysis of paediatric cancers and application to 

biomedical publications on paediatric cancers 

 
Project number 826121 

Project acronym iPC 

Project title 
individualizedPaediatricCure: Cloud-based virtual-

patient models for precision paediatric oncology 

Start date of the project 1st January, 2019 

Duration 53 months 

Programme H2020-SC1-DTH-2018-1 

 

Deliverable type Report 

Deliverable reference number SC1-DTH-07-826121 / D3.2 / 1.0  

Work package contributing to the 

deliverable 
WP3 

Due date May, 2021 – M29 

Actual submission date 31st May, 2021 

 

Responsible organisation Barcelona Supercomputing Center (BSC) 

Editor Davide Cirillo 

Dissemination level PU 

Revision 1.0 

 

Abstract 

We report on the implementation of a text mining 

workflow for the extraction of relevant biomedical 

information from publicly available free text and its 

network representation. 

Keywords 
Text mining, named entity recognition, word 

embeddings, network biology 

      

 



D3.2 - Adaptation of MelanomaMine and LiMTox to the analysis of paediatric cancers and  
application to biomedical publications on paediatric cancers 

iPC D3.2  Public Page II 

Editor 

Davide Cirillo (BSC) 

 

Contributors (ordered according to beneficiary numbers) 

Matteo Manica (IBM) 

Salvador Capella-Gutierrez (BSC) 

Alfonso Valencia (BSC) 

Martin Krallinger (BSC) 

Javier Omar Corvi (BSC) 

José María Fernández (BSC) 

Alejandro Canosa (BSC) 

Elena De La Calle (BSC) 

Joao Pita Costa (XLAB) 

Jolanda Modic (XLAB) 

 

 

 

 

 

 

 

 

 

 

 

Disclaimer 

The information in this document is provided “as is”, and no guarantee or warranty is given that the information 
is fit for any particular purpose. The content of this document reflects only the author`s view – the European 
Commission is not responsible for any use that may be made of the information it contains. The users use the 
information at their sole risk and liability. 
 



D3.2 - Adaptation of MelanomaMine and LiMTox to the analysis of paediatric cancers and  
application to biomedical publications on paediatric cancers 

iPC D3.2  Public Page III 

Executive Summary 

 

Most results in biomedical research are published as part of unstructured natural language texts. 
Traditionally, researchers access these sources through bibliographic databases, such as MEDLINE 
of the National Library of Medicine, collecting abstracts and publications, and their corresponding 
search engines, such as PubMed. The fast growing number of publications (MEDLINE contains more 
than 26 million1 references to journal articles in biomedicine) makes the task of information retrieval 
an extremely tedious and complex endeavour, which requires the use of Natural Language 
Processing (NLP) and, in particular, text mining approaches. 

This document reports on the implementation of a text mining workflow for extracting biomedical 
information from large volumes of paediatric cancer-related abstracts in PubMed. The workflow 
builds on the general framework of two text mining tools that have been previously developed at 
BSC: LimTox and MelanomaMine. We adapted core common components of LimTox and 
MelanomaMine to process PubMed abstracts and generate paediatric cancer-related corpora as 
well as key bio-entities that can be used to create relational graphs or networks. Additionally, some 
functionalities of the iPC text mining workflow, namely the generation of word embeddings, can be 
used by complementary NLP approaches, such as INtERAcT, developed by IBM, to infer molecular 
associations. 

The document reports on the implementation of the iPC text mining workflow and three use cases. 
The relevance of text mining in paediatric oncology and the motivation of the objectives of D3.2 are 
exposed in the Chapter 1 (Introduction). MelanomaMine and LimTox tools and their use in projects 
related to and works supported by iPC are presented in Chapter 2 and Chapter 3. Chapter 4 is 
devoted to the description of the specific components of the iPC text mining workflow and the 
comparison with MelanomaMine and LimTox. Finally, Chapter 5 shows applications of the iPC text 
mining workflow to paediatric oncology and future work, and Chapter 6 offers a summary and the 
conclusions of the document. 

All the files used in the analyses presented in sections 5.2 and 5.2 as well as the draft version of the 
research paper presented in section 2.2 are available at the iPC Nextcloud repository: 
https://data.ipc-project.bsc.es/s/tgYEkTC7bECWkor. 

                                                
1 https://www.nlm.nih.gov/bsd/medline_lang_distr.html  

https://data.ipc-project.bsc.es/s/tgYEkTC7bECWkor
https://www.nlm.nih.gov/bsd/medline_lang_distr.html
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Chapter 1 Introduction 

1.1 Text mining in cancer research 

Clinical research and practice in oncology and related fields generate large volumes of texts detailing 
patient descriptors, such as symptoms, diagnosis and treatment outcomes, as well as experimental 
findings and therapeutic strategies. Knowledge extraction from textual sources of biomedical 
information, including clinical documentation (e.g., notes from electronic health records and 
pathology reports) as well as scientific literature (e.g., scholarly articles published in scientific 
journals [1]), has a great potential in biomedicine, especially in the area of cancer research [2]. 
Nevertheless, even with several successful applications, such as adverse drug event surveillance 
[3] and literature-based discovery [4], text mined information is recognized as an underused source 
of knowledge for improved cancer care [5] mainly due to the difficulties associated with the domain-
specific text processing. 

Indeed, despite being rich in information, texts in free forms are not easy to process automatically. 
Moreover, terminology and language expressions in medicine and molecular biology make the 
analysis of biomedical unstructured data a notoriously difficult domain for Natural Language 
Processing (NLP) and text mining. In these areas, relevant sources comprise heterogeneous 
document types from various highly specialized subdomains with a highly ambiguous language, 
characterized by acronyms, abbreviations and ever-changing technical terms. Substantial progress 
has been made in the extraction of bio-entity mentions (genes, proteins, drugs, diseases, and others) 
and their relations, as evaluated in the bi-annual challenge BioCreative that BSC organizes 
(http://www.biocrative.org). 

The content of a text needs to be made accessible for statistical analysis and modeling by rendering 
a more structured representation of it through information extraction (IE). IE consists in automatically 
extracting structured information from unstructured sources. NLP methods and, in particular, text 
mining techniques are fundamental tools to achieve precise IE and make the unstructured content 
of texts accessible for further analysis and learning tasks. iPC partners BSC, IBM and XLAB recently 
offered an in-depth discussion on the importance of text mining for knowledge retrieval in cancer 
research, with particular emphasis on paediatric oncology, in a blog posted on the iPC web page 
titled “Mining biomedical text to find insight that can save lives” 2. 

In this document, we report on the development of a unified text mining workflow for IE in paediatric 
oncology. The workflow is based on the backbone of existing text mining tools that we previously 
designed, called MelanomaMine and LimTox, dedicated to distinct branches of cancer research, 
namely melanoma research and liver toxicology, respectively. The iPC text mining workflow 
facilitates the generation of network representation of the text mined information for further utilization 
in other iPC work packages, specifically WP4 (“Network-based meta-analysis of multi-omics and 
text-mined data”). 

 

1.2 MelanomaMine and LimTox: a blueprint for text mining in cancer 
research 

MelanomaMine and LimTox are two text mining applications that have been developed at BSC in 
collaboration with the National Centre for Oncological Research (CNIO) in Madrid, Spain. 

MelanomaMine is a text mining application and database dedicated to the processing of melanoma 
related biomedical literature and knowledge resources. MelanomaMine uses IE and machine 
learning approaches to score and classify textual data and applies Named Entity Recognition (NER) 

                                                
2 https://ipc-project.eu/mining-biomedical-text-to-find-insight-that-can-save-lives/ 

https://www.zotero.org/google-docs/?jHmh1c
https://www.zotero.org/google-docs/?LMpgcB
https://www.zotero.org/google-docs/?G0N7Wl
https://www.zotero.org/google-docs/?B6Vard
https://www.zotero.org/google-docs/?N23rWy
http://www.biocrative.org/
https://ipc-project.eu/mining-biomedical-text-to-find-insight-that-can-save-lives/
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methods to detect bio-entities of relevance to understand the molecular basis of melanoma, focusing 
on genes, proteins, mutations and chemicals/drugs. 

LimTox [6] is a system to extract associations between compounds and liver toxicological endpoints, 
facilitating the establishment of toxicity thresholds of several substances. LimTox is intended to serve 
basic researchers and medical personnel as a domain-specific search and retrieval system to 
evaluate the relevance of a particular bio-entity to hepatotoxicity. 

Beside specific functionalities required for their distinct domain of application, both methods share 
common processes. They retrieve associations among genes, proteins, mutations, chemicals/drugs 
through NER and use machine learning approaches, namely Support Vector Machines (SVMs), to 
classify documents. Additionally, both tools provide interfaces that enable heterogeneous search 
types, including general free text search and entity specific search options. The information is 
displayed in friendly user platforms that allow both specialists and nonspecialists visualizing and 
exploring the results. 

MelanomaMine and LiMTox have been originally developed for melanoma and hepatotoxicity, but 
the text mining foundations of their internal design make those tools, or derived adaptations, 
particularly amenable for cancer research and, specifically, paediatric oncology. 

 

1.3 Adaptation motivation 

The efficient retrieval and processing of biomedical information from textual sources represents an 
important step to better characterize the molecular entities at play in paediatric cancers. The need 
to overcome the limited domain-specific applications of dedicated text mining tools represents the 
main motivation for the adaptation of MelanomaMine and LimTox to IE for paediatric oncology. 
Additionally, the interoperability between the outcomes of the iPC text mining workflow and state-of-
the-art NLP tools to infer specific molecular associations, such as INtERAcT [7], developed by IBM, 
is highly desirable. Moreover, the possibility of generating network representations of the text mined 
information allows leveraging this knowledge in the computational solutions implemented in further 
iPC work packages, specifically WP4 (“Network-based meta-analysis of multi-omics and text-mined 
data”). 

A project focused on the implementation of an initial text mining approach for pediatric oncology was 
awarded the “José Castillejo” mobility grant funded by the Spanish Ministry of Education in 2019-
2020, which allowed iPC partners BSC and IBM to actively collaborate on this matter. The project 
led to the development of a prototype text mining tool for the content analytics of scientific abstract 
of biomedical publications referring to distinct childhood cancers. A short summary of this 
collaborative experience is described in a blog post that BSC has published on the iPC web page 
titled “Automatic extraction of biomedical knowledge from scientific publications” 3. 

The iPC text mining workflow, which stemmed from this initial prototype, enables the automatic 
extraction of mentions of bio-entities (genes, proteins, drugs, diseases and others) and their 
associations, allowing to unify and interpret biomedical information of text sources, to further analyze 
it with INtERAcT, and to link it with the multi-omics datasets available within the iPC consortium 
(Figure 1). 

                                                
3 https://ipc-project.eu/automatic-extraction-of-biomedical-knowledge-from-scientific-publications/  

https://www.zotero.org/google-docs/?UCNIPE
https://www.zotero.org/google-docs/?rG9H0D
https://ipc-project.eu/automatic-extraction-of-biomedical-knowledge-from-scientific-publications/
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Figure 1: The use of text mining in the iPC project. The adaptation of core components of MelanomaMine 
and LimTox as well as the interoperability with INtERAcT allow generating network representations of 
information mined from paediatric cancer-specific texts that can be leveraged by the iPC consortium. 
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Chapter 2 MelanomaMine 

2.1 MelanomaMine description 

MelanomaMine is a text mining application dedicated to the processing of melanoma related 
biomedical literature and knowledge resources. The tool has been created in collaboration with the 
National Centre for Oncological Research (CNIO) in Madrid, Spain. A web service of MelanomaMine 
is visible at http://melanomamine.bioinfo.cnio.es/. The code of the MelanomaMine application is 
available at the public GitHub repository https://github.com/cirillodavide/melanomamine. 

MelanomaMine uses IE and machine learning to score and classify textual data based on melanoma 
relevance detected by a text classifier, namely a Support Vector Machines (SVMs) with a linear 
kernel. The SVM model was trained on the content of a curated set of 4580 melanoma-related 
PubMed abstracts and 4580 randomly selected abstracts. As a testing set, abstracts from the 
Melanoma Molecular Map Project (MMMP, www.mmmp.org), were used, achieving high 
performances (0.95 Area Under the ROC curve in a five-fold cross-validation). 

Along with document classification capabilities, MelanomaMine integrates NER tools for bio-entities 
based on open-source software4, namely tmChem for chemical names,  GNormPlus for gene/protein 
names, tmVar for sequence variants at protein and gene levels, and DNorm for disease names. A 
description of the MelanomaMine pipeline is presented in Figure 2. 

MelanomaMine is intended as a domain-specific search and retrieval system to be used for both 
basic researchers as well as for medical personnel who want to know how relevant a particular gene 
or drug or mutation is to melanoma. More information about MelanomaMine implementation, the 
SVM training and performance evaluation can be found in the Supplemental Information file of the 
draft version of a research paper (see section 2.2) that is available at the iPC Nextcloud repository: 
https://data.ipc-project.bsc.es/s/tgYEkTC7bECWkor. 

                                                
4 https://www.ncbi.nlm.nih.gov/research/bionlp/tools/ 

http://melanomamine.bioinfo.cnio.es/
https://github.com/cirillodavide/melanomamine
http://www.mmmp.org/
https://data.ipc-project.bsc.es/s/tgYEkTC7bECWkor
https://www.ncbi.nlm.nih.gov/research/bionlp/tools/
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Figure 2: Flow chart of the MelanomaMine system pipeline. The various tasks that are part of the 
MelanomaMine processing pipeline are shown, from the initial document preprocessing to the detection of 

chemical entities to PubMed abstract scoring. 

 

2.2 Research outcomes using MelanomaMine 

BSC has employed MelanomaMine in a recent work on melanoma risk assessment supported by 
iPC. A draft version of the research paper, which is an invited contribution to be peer-reviewed for a 
special issue of the journal Cancers (ISSN 2072-6694), is available at the iPC Nextcloud repository: 
https://data.ipc-project.bsc.es/s/tgYEkTC7bECWkor  

In this work, we use MelanomaMine to identify and analyze melanoma-specific scientific literature 
and discover relevant information that can accelerate biomedical discovery. Melanoma is the most 
deadly skin cancer, for which early detection and Precision Medicine interventions are crucial to 
survival. Several loci for susceptibility to various forms of Cutaneous malignant melanoma (CMM) 
have been mapped to distinct chromosomes, and somatic mutations have been identified in distinct 
genes. Despite recent efforts to identify other high-risk melanoma susceptibility genes, around 77% 
of melanoma-prone families present unknown susceptibility factors involved in the disease. In this 
view, it is of utmost importance to identify genes involved in unsuspected biological processes with 
potential implications in early detection and personalized treatment. 

We applied MelanomaMine to score more than 16 milions PubMed abstracts and created a 
melanoma-specific knowledge corpus by selecting the top-ranking documents. This corpus of 
melanoma-specific abstracts was subsequently processed with IBM Watson Explorer (WEX), a 
general-purpose cognitive computing software that allows performing NLP analytics on huge 
volumes of unstructured data. In particular, we analyzed the content of the melanoma-specific 
knowledge corpus with WEX using healthcare-specific dictionaries obtained from the IBM Text 
Analytics Catalog (TAC). In this way, we generated a so-called Content Analytics graph, that is a 
weighted network of relevant keywords. We analyzed the Content Analytics graph to extract 

https://data.ipc-project.bsc.es/s/tgYEkTC7bECWkor
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actionable insights for melanoma healthcare and showed the potential of coupling text mining and 
cognitive computing for cancer research (Figure 3). 

 

Figure 3: Content Analytics graph generated by WEX using TAC healthcare dictionaries and the melanoma-
specific corpus distilled by MelanomaMine. Edges width is proportional to the WEX score. (A) TAC keywords 

associations; (B) genes from protein-protein interactions and gene-phenotype associations. 

 

MelanomaMine proves to be an indispensable tool that permits both to pinpoint distinct melanoma-
related bio-entities and to use them to provide WEX with melanoma-specific information. Our results 
shed light on distinct aspects of melanoma physiopathology. In particular, we corroborate that 
relevant gene alterations in melanoma are involved in cellular signaling and genome stability, and 
reveal new biological processes involved in pathology, indicating promising and uncharted avenues 
for biomedical research in skin malignancies. 

Considering the little amount of existing text mining solutions dedicated to melanoma-related 
problems, MelanomaMine represents a comprehensive and user-friendly tool for domain-specific 
text mining. Indeed, text mining applications dedicated to melanoma research comprise custom 
applications, common procedures adapted to specific tasks, and functionalities embedded in 
general-purpose platforms. 

Our results show how computational frameworks, designed to homogenize and contextualize 
biomedical information prior to downstream analyses, can be effectively used to allow specialized 
systems, such as WEX or INtERacT (see section 5.3), delivering valuable observations for 
biomedical discovery. This general paradigm has been strongly promoted by IBM developers since 
the inception of the Watson technology [8]. As a matter of fact, all individual IBM Watson commercial 
applications (e.g. the conversational agent Watson Assistant for Hospitality, designed for hotel 
guests, or Watson Personality Insights, designed for predicting consumption preferences) are 
implemented for domain-specific tasks, integrating additional machine learning components (e.g. 
tone analyzer or sentiment analysis) to the NLP hallmark features of the original Watson technology. 

  

https://www.zotero.org/google-docs/?oH1wL2
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Chapter 3 LimTox 

3.1 LimTox description 

LimTox [6] (http://limtox.bioinfo.cnio.es/) is a web-based online biomedical search tool. It uses 
several sources, including adverse liver events, scientific abstracts, full text articles, and medical 
agency assessment reports. LimTox implements a biomedical text mining pipeline, which performs 
distinct tasks, such as NER and IE, using an array of methodological approaches, namely machine 
learning, rule- and pattern-based techniques, and term lookup strategies. LimTox search is 
specialized to distinct queries, including chemical compounds or drugs, genes, and biochemical liver 
markers. Although it is specific for liver toxicity, it can be expanded to other organs to provide insights 
regarding nephrotoxicity, cardiotoxicity, thyrotoxicity, and phospholipidosis. LimTox has been 
developed in the context of the eTOX project (http://www.etoxproject.eu/) aimed at creating models 
to support toxicity prediction by sharing historical toxicological preclinical data within pharmaceutical 
industries. 

 

 

Figure 4: Flow chart of the LimTox system pipeline. The various tasks that are part of the LimTox processing 
pipeline are shown, from the initial document preprocessing to the detection of chemical entities to the 

hepatotoxicity text scoring approaches and relation extraction tasks. 

 

3.2 Research outcomes using LimTox 

LimTox has been employed inside a text mining pipeline that is currently under development in the 
context of the eTRANSAFE project [9] (https://etransafe.eu/). As a continuation of the eTOX project, 
eTRANSAFE aims to create a toxicological knowledge hub for preclinical and clinical data that 
leverages tools for data sharing, mining, analysis and predictive modelling to account for security 
and safety assessment in drug development. The text mining efforts of eTRANSAFE are devoted to 
the implementation of tools to support the identification of relevant information in the The European 
Federation of Pharmaceutical Industries and Associations (EFPIA) toxicology reports on drug tests 

https://www.zotero.org/google-docs/?bmJAah
http://limtox.bioinfo.cnio.es/
http://www.etoxproject.eu/
https://www.zotero.org/google-docs/?Y9e5cq
https://etransafe.eu/
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from preclinical studies. In particular, the information of interest consists of treatment-related findings 
(abnormal observations) that comply with a study report domain template and can be used to 
develop an annotated preclinical toxicological corpus. 

The eTRANSAFE text mining pipeline, called PreTox, is a modular system composed of several 
components, including a standard pre-processing (tokenization, sentence splitter, part-of-speech 
tagging, etc.), a sentence classifier (detection of relevant toxicological sentences), and terminology 
and relation extraction (NER, dictionary annotations, additional taggers, etc.). The pipeline has been 
implemented following a modular organization using software containers for the different 
components and orchestrated using Nextflow as workflow manager. The retrieved information is 
exported to online resources that will be available to be queried and visualized by the end-users. 
LimTox dwells inside the terminology extraction component of the PreTox pipeline as an annotator 
of hepatotoxicity concepts (Figure 5). 

 

 

Figure 5: Terminology extraction component of the eTRANSAFE text mining pipeline. LimTox is embedded 
into the hepatotoxicity annotation module. 

  



D3.2 - Adaptation of MelanomaMine and LiMTox to the analysis of paediatric cancers and  
application to biomedical publications on paediatric cancers 

iPC D3.2  Public Page 9 

Chapter 4 A unified workflow for text mining in 

paediatric oncology 

4.1 The iPC text mining workflow 

The iPC text mining workflow allows generating a network representation of the information extracted 
from PubMed abstracts (Figure 6). The application, which is mostly written in Python, runs in a 
Docker container and it is publicly available as a GitHub repository at 
https://github.com/cirillodavide/ipc_textmining. The repository provides documentation to execute an 
illustrative example. 

 

 

 

Figure 6: Diagram describing the components of the iPC text mining workflow. 

 

The iPC text mining workflow is based on two main pillars, namely the extraction of bio-entities from 
selected PubMed abstracts and their network representation based on local and global associations 
inside the text. In particular, the workflow consists of five sequential steps: 

 

1. Abstracts fetching. The abstracts to analyze are selected based on a user-defined query 
that uses the Medical Subject Headings (MeSH) associated with the paediatric cancer, or 
other content, of interest. Every article in the PubMed database is associated with a set of 
MeSH terms, a controlled vocabulary thesaurus describing its content. MeSH terms can be 
descriptors (main headings) and qualifiers (subheadings). Descriptors indicate the subject or 
topic, the genre or format, and the geographic locations, while qualifiers convey a particular 
aspect of a subject. All existing MeSH terms can be interrogated at 
https://www.ncbi.nlm.nih.gov/mesh/. Queries can be of different types: 

a. A query can consist of a single MeSH term. For example, the query “hepatoblastoma 
[mesh]” will return all PubMed abstracts indexed with the corresponding MeSH term 
D018197. 

https://github.com/cirillodavide/ipc_textmining
https://www.ncbi.nlm.nih.gov/mesh/
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b. A query can include specific subheadings. For example, the query 
“hepatoblastoma/genetics [mesh]” will return all the PubMed abstracts that 
specifically address the genetic aspects of this pediatric liver cancer. 

c. A query can be composed of several MeSH terms. For example, the query 
"carcinoma, hepatocellular/genetics [mesh] AND hepatoblastoma/genetics [mesh]" 
will return all PubMed abstracts that address the genetic aspects of adult and 
childhood liver cancer. 

 

2. Abstracts processing and annotation. The fetched abstracts are downloaded as a single 
file in XML format. This file is processed in order to return a simple dictionary where the text 
of each abstract is associated with the corresponding PubMed identifier (PMID). The text of 
each selected abstract is annotated using PubTator Central (PTC) [10] that is an NCBI 
service providing automatic annotations of biomedical concepts. PTC is interrogated 
programmatically through a REST API. The annotations include mentions of disease names, 
gene/protein names, drugs/chemical, species, mutations at protein and/or DNA level, SNPs, 
and cell lines. 

To protect them from the next step of text normalization, the PTC annotations are converted 
into unique identifiers of 10 letters padded with “x”. For example, the sentence “The AXIN1 
protein functions in the canonical pathway” is annotated by PTC as “The Gene:8312 protein 
functions in the canonical pathway” and the annotation is then masked as “The xorikmlyrmxx 
protein functions in the canonical pathway”. A vocabulary of PTC annotations and internal 
identifiers is provided. 

 

3. Abstracts normalization. This step normalizes the annotated text of each abstract so that 
the content of all documents are harmonized and comparable. Normalization consists of a 
series of basic NLP tasks, namely 

a. Tokenization, that is breaking the text into tokens such as words, punctuation marks, 
numerical digits, etc. 

b. Lemmatization, that is converting the words in the second or third forms to their first 
form variants. 

c. Stemming, that is reducing the words to its root form. 

For example, the aforementioned annotated sentence “The xorikmlyrmxx protein functions in 
the canonical pathway” is normalized as “xorikmlyrmxx protein function canon pathway”. 
Normalization tasks are performed by using the popular NLP Python library called NLTK. 

 

4. Global and local text features. The local features of a word are encapsulated in a vector 
embedding that reflects its local context (i.e., the surrounding words). Additionally, the global 
features of a word are captured by its distance to and co-occurrence with all other words in 
the body of the abstract. 

a. Local text features. Vector embeddings of each word of the normalized abstracts are 
created with the open-source Python library GenSim [11], distinguished for efficiency 
and scalability. To learn the word embeddings, GenSim employs the word2vec 
technique [12], which is based on a neural network model that can be trained using 
two possible arquitectures, called continuous bag-of-words (CBOW) and skip-gram 
(Figure 7). The skip-gram training is more apt for infrequent words [13]. The iPC text 
mining workflow is configured to use skip-gram training, with vector dimensionality of 
150 and maximum distance of 3 between the current and predicted words. These 
parameters can be changed by the user. 

b. Global text features. To account for the spatial relationships between pairs of words 
in the body of the selected abstracts, we compute metrics of words’ distance and co-

https://www.zotero.org/google-docs/?yPkhPe
https://www.zotero.org/google-docs/?clASob
https://www.zotero.org/google-docs/?pGNwBd
https://www.zotero.org/google-docs/?cXqXMP
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occurrence. In particular, we calculate the average number of other words that 
separate each possible pair of words as well as the number of selected abstracts 
where such a pair appears. 

 

Figure 7: Two possible training architectures of the word2vec model to learn vector embeddings of words. 
Continuous bag-of-words (CBOW) generates the embeddings (grey box) while learning to predict the current 

word (orange box) from a surrounding window of context words (green boxes); skip-gram generates the 
embeddings while learning to predict the surrounding window of context words from the current word. 

 

5. Network representation. Local and global text features are used to create a network 
representation of associations among words. In the case of local text features, the cosine 

similarity (cosθ) between the vector embeddings of a pair of tokens (  and ) is computed 
as follows: 

 

 

In the case of global text features, the two empirical p-values are computed for distance and 

co-occurrence ( ) and combined into one test statistic ( ) using the Fisher’s method in 

order to identify pairs of tokens that are significantly close and co-occurrent ( ): 

 

 

 

4.2 Comparison with MelanomaMine and LimTox 

The main difference between the iPC text mining workflow and MelanomaMine and LimTox is the 
scope of their area of application. While the first is an IE modular workflow that can be used to 
retrieve information on paediatric cancers or other concepts of interest and generate networks, the 
others are domain-specific software based on pre-trained models dedicated to one specific task (i.e., 
document classification). Despite the differences in scope, distinct components of the iPC text mining 
workflow are inspired by those that are in common between MelanomaMine and LimTox and 
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improved. In particular, three main improvements of the iPC text mining workflow with respect to the 
domain-specific tools MelanomaMine and LimTox can de identified (Table 1): 

 

1. The document selection is not based on predictions but on curated information. Specifically, 
the system allows the user to retrieve the PubMed abstracts of interest by using the desired 
combinations of MeSH descriptors and qualifiers. The main advantages of this approach are 
an increased flexibility in the content search and the independence from static pre-trained 
models of distinct biomedical concepts (e.g., melanoma and hepatotoxicity).  

 

2. The bio-entity tagging in PubMed abstracts relies on the continuously updated service PTC 
instead of pre-defined taggers. PTC is an automated concept annotation in abstracts and full-
text biomedical articles available for immediate download. PTC concept identification 
systems and a new disambiguation module based on deep learning ensure better 
performances in NER tasks as demonstrated in a BioCreative benchmarking [10]. 

 

3. While MelanomaMine and LimTox do not contain a network inference component, the iPC 
text mining allows generating such relational representations of the information that is 
extracted. This functionality is based on word embeddings and enables the interoperability 
between the iPC text mining workflow and other tools that used in the iPC project, such as 
INtERAcT. Moreover, the networks that are generated can be directly used as additional 
layers of information on paediatric tumors to integrate in the network-based approaches 
implemented in other work packages of the project, namely WP4. 

 

Additionally, the iPC text mining workflow has been entirely implemented to be executed inside a 
Docker container. Packing, deploying, and running the application using Docker containers 
represent a lightweight and portable solution for any text mining workflow. This also accelerates the 
cycle of development, test, and production for newer versions of this system. Moreover, 
dockerization simplifies and automates the deployment process for possible future web applications. 

Finally, it is important to notice that the iPC text mining workflow could be easily equipped with the 
possibility of training an ad hoc machine learning model on-the-fly, such as SVMs, to refine the 
document selection once a set of abstracts on a concept of interest have been retrieved. Anyways, 
such a training set of abstracts should be large enough to avoid overfitting, which is generally not 
the case considering the small amount of publications about specific paediatric tumors and rare 
diseases in general. For this reason, the most appropriate strategy for document selection for iPC is 
to leverage the wealth of curated MeSH terms and the possibility of combining them. 

Tasks and 
components 

MelanomaMine & 
LimTox 

iPC text mining 
workflow  

Comment 

Document 
classification 

SVM models 
requiring domain 
knowledge feature 
engineering. 

MeSH thesaurus MeSH thesaurus contains approximately 
27,000 entries and is updated annually to 
reflect changes in the medical 
terminology. It is human-curated and 
based on predefined terms with specific 
definitions and synonyms. Thus, MeSH is 
effective for searching for meaning, rather 
than only for keywords or patterns of 
words ranked based on a static disease-
specific model. 

Bio-entity 
tagging 

A selection of 
concept taggers: 
tmChem (chemical 

PubTator Central 
(PTC) 

PTC provides automatic annotations of 
biomedical concepts in PubMed abstracts 
and full-text articles. Bio-entity tagging 

https://www.zotero.org/google-docs/?q1gUAe
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Tasks and 
components 

MelanomaMine & 
LimTox 

iPC text mining 
workflow  

Comment 

names), 
GNormPlus 
(gene/protein 
names), tmVar 
(sequence 
variants), DNorm 
(disease names) 

uses a series of state-of-the-art concept 
taggers with improved performance 
benchmarked using BioCreative corpora. 
PTC service is continuously synchronized 
with PubMed. The resource can be 
interrogated programmatically via a REST 
API (as in the case of the iPC text mining 
workflow), or downloaded in bulk via FTP. 

Network 
inference 

N.A. Word embeddings 
and co-occurrence 
statistics 

Word embeddings are efficient and dense 
representations in which words with 
similar semantic contexts are rendered 
with similar encodings. The similarity 
among word embeddings can be used to 
infer network representation of the 
information extracted from text. 

Table 1: Main improvements introduced in the iPC text mining workflow in common tasks and components 
with MelanomaMine and LimTox (“Document classification” and “Bio-entity tagging”) as well as new ones 

(“Network inference”). 
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Chapter 5 Applications of the iPC text mining 

workflow to paediatric oncology and future work    

5.1 Multilayer community trajectories of text-mined medulloblastoma 
genes 

We employed the iPC text mining workflow in a recently published study on medulloblastoma [14]. 
Medulloblastoma is a malignant and fast-growing primary central nervous system tumor, which 
originates from embryonic cells of the brain or spinal cord with no known causes and a preferential 
manifestation in children. Despite being rare, it is the most common cancerous pediatric brain tumor. 
Four molecular disease subtypes of pediatric medulloblastomas with distinct clinicopathological 
features have been identified: WNT, SHH, Group 3, and Group 4 [15]. Seven genes exhibit recurrent 
genetic alterations in the four subgroups (SHH in SHH group, CTNNB1 in WNT group, MYC and 
MYCN in Groups 3-4, ERBB4, SRC and CDK6 in Group 4 [16,15,17–23]. 

In our study, we implement an analytical procedure that uses a complex network representation, 
called multilayer network, presenting relational associations among genes from large-scale 
repositories of biomedical information, including protein interactions, drug targets, genetic variants, 
cellular pathways, and metabolic reactions. The procedure is based on a new descriptor that we 
introduced, called multilayer community trajectory, which is defined as the sequence of multilayer 
network communities visited by a node at increasing values of modularity resolution. The definitions 
of multilter network community and modularity resolution are given in the following. 

Although there is not a consensus definition for community in networks, it is widely accepted to 
consider a community as the group of nodes that are more densely connected with each other than 
the rest of the network [24]. A measure of such property is called modularity (Q), which is a quality 
function of a partition c of the network X that can be maximized in order to identify communities. A 
convenient algorithm to detect communities by maximizing the modularity is the Louvain algorithm 
[25]. In the case of a multilayer network, the sum of the modularities of each layer g is maximized, 
as in following equation:  

 

Modularity is parametrized to the modularity resolution (γ): the higher the resolution, the smaller the 
size of the detected communities. An adaptation of the Louvain algorithm for multilayer networks has 
been implemented in the software MolTi [26]. The multilayer community trajectory of each node of 
the multilayer network can be, thus, derived by progressively increasing the modularity resolution. 
Our results illustrate how multilayer community trajectories capture the complexity of multi-omics 
information despite the small sample size, making this analytical tool particularly suitable for the 
study of pediatric cancers and rare diseases in general. 

To monitor the behaviour of multilayer communities containing medulloblastoma genes upon 
changes of the modularity resolution, we sought to take into account gene mentions in abstracts of 
scientific publications about medulloblastoma. By using core functionalities of the iPC text mining 
workflow (i.e., abstracts fetching, processing and annotation), we retrieved a total of 1941 multi-
species genes, consisting of 1475 human genes (76%), 389 murine genes (20%), and 77 genes of 
other species (4%). We identified the multilayer communities to which the human genes (1387 out 
of 1475, represented in the multilayer network) belong in a range of modularity resolution of interest 
(see [14] for details). 

As shown in Figure 8, there are plain differences in the trajectories of the communities that are visited 
by each gene. Interestingly, the trajectories of seven genes, whose recurrent genetic alterations are 
well-known hallmark features of the four molecular disease subgroups, branch off from well 

https://www.zotero.org/google-docs/?gqUzpo
https://www.zotero.org/google-docs/?GWrO6y
https://www.zotero.org/google-docs/?hP77Bx
https://www.zotero.org/google-docs/?oF53wY
https://www.zotero.org/google-docs/?FTR6ho
https://www.zotero.org/google-docs/?iYmlC4
https://www.zotero.org/google-docs/?cyH5iV
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separated communities, with the exception of SRC and CTNNB1, which encode proteins that are 
physical interactors (IntAct interaction accession: EBI-15951997). 

 

Figure 8: Dendrogram of multilayer community trajectories. The dendrogram represents the Hamming distance 
among the trajectories of the multilayer communities visited by each gene associated to medulloblastoma by 
text mining in a range of modularity resolution. Trajectories of the seven genes that are known to characterize 
the four medulloblastoma subgroups are highlighted in red (SHH in SHH group, CTNNB1 in WNT group, MYC 
and MYCN in Groups 3-4, ERBB4, SRC and CDK6 in Group 4). 

 

The landscape of these multilayer community trajectories can be further explored to investigate the 
so-called operations on dynamic communities [27], such as birth (a new community appears), death 
(a community vanishes), and resurgence (a community disappears and appears again later on). 
Along the explored range of modularity resolution, the 2186 unique multilayer communities of the 
text-mined medulloblastoma genes experience a total of 2517 death events and 673 resurgence 
events (Figure 9), indicating a high level of instability (all communities disappear at least once) but 
also a high level of commutability (some communities reappear several times with the same exact 
composition). These observations led us to realize that each gene is characterized by its own journey 
throughout the communities found at different levels of resolution. For this reason, we further tested 
the hypothesis that tracing such trajectories for a set of disease-related genes could be exploited for 
patient clustering purposes, which we explored in the publication using proteogenomic data from two 
independent medulloblastoma cohorts. 

 

https://www.zotero.org/google-docs/?kPgDPL
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Figure 9: Operations on dynamic communities. Count of dynamic events (birth, death, and resurgence) in the 
multilayer communities that contain text-mined medulloblastoma genes. 

 

5.2 Network representation of text mined bio-entities of iPC paediatric 
tumors 

The iPC text mining workflow has been used to generate networks of bio-entities for each one of the 
main five paediatric tumors that are being studied by the iPC consortium, namely Ewing’s sarcoma, 
hepatoblastoma, medulloblastoma, neuroblastoma, and acute lymphoblastic leukemia. PubMed 
abstracts indexed with such cancers were downloaded in February 2020. The MeSH terms used 
and the number of retrieved abstracts are reported in Table 2. All output files generated by the iPC 
text mining workflow for the five paediatric tumors are publicly available at the iPC Nextcloud 
repository: https://data.ipc-project.bsc.es/s/tgYEkTC7bECWkor 

 

Paediatric tumor MeSH term Number of abstracts 

Neuroblastoma 
D009447 23,122 

Acute Lymphoblastic Leukemia D054198 
22,898 

Medulloblastoma D008527 5,148 

Ewing’s sarcoma D012512 5,024 

Hepatoblastoma D018197 1,557 

Table 2: MeSH terms and number of retrieved abstracts of the main five paediatric tumors studied in the iPC 
project (abstracts downloaded in February 2020). 

 

As an illustrative example, we report the counts of bio-entities that have been extracted from the 
abstracts indexed as ‘hepatoblastoma’ (Figure 10). It is important to notice that, although the 
abstracts of scientific publications are typically short texts (between 150 and 250 words) and the 
hepatoblastoma set of abstracts is the smallest in our collection (1,557 abstracts), the number of 

https://data.ipc-project.bsc.es/s/tgYEkTC7bECWkor
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extracted bio-entities of relevance for further investigations (i.e., genes, chemicals, diseases) is 
qualitatively high. 

  

Figure 10: Counts of bio-entities extracted from abstracts indexed as ‘hepatoblastoma’ (MeSH ID: D018197) 
(see Table 2). 

 

The network representation of hepatoblastoma content based on local and global text features 
reveals a high connectivity among different types of bio-entities (Figure 11). Although an in-depth 
analysis of this network is beyond the scope of this document, a closer look at its structural 
properties, in particular its community structure, indicates an expected affinity among the types of 
retrieved bio-entities. In particular, it can be observed how the composition of the communities is 
rather homogeneous and reflects associations among drugs (e.g., cisplatin, fluorouracil, vincristine), 
diseases (e.g., biliary atresia, rhabdomyosarcoma, nephroblastoma), and genes (e.g., CDKN2A, 
TP53, CTNNB1). 
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Figure 11: Network representation of the bio-entity associations extracted from PubMed abstracts indexed as 
‘hepatoblastoma’. For ease of visualization, associations (edges) are shown only among bio-entities (nodes) 
that are significantly close and co-occurrent (χ2 < 0.01) and in the 80th percentile of cosine similarity between 
the corresponding word embeddings (i.e., with most similar semantic context). Nodes are colored based on 
membership to the four network communities detected using the Clauset-Newman-Moore greedy modularity 

maximization algorithm implemented in the Python library Networkx. 

 

5.3 INtERAcT using the word embeddings of iPC paediatric tumors

The word embeddings generated for the five paediatric tumors under study within the iPC project 
(see section 5.2) have been used to infer a protein-protein interaction network using INtERAcT [7].  

INtERAcT was developed in the H2020 project PrECISE (ref. 668858), where it was used to extract 
protein-protein interactions. INtERAcT infers interactions using a novel metric that exploits word 
embeddings. It is important to notice that generating word embeddings does not require text labeling 
for training or domain-specific knowledge, and hence it can be easily applied to different scientific 
domains in a completely unsupervised way. INtERAcT defines its metric on a discretized space. A 
clustering of the word embedding space is performed, with the goal to define semantic word groups. 
The score for the interactions between two entities of interest is then defined using the Jensen-
Shannon divergence between their neighbors’ distributions over clusters’ assignment. 

https://www.zotero.org/google-docs/?cHFQIS
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The lists of protein-protein interaction inferred with INtERAcT using the word embedding generated 
with the iPC text mining workflow (see section 5.2) are available at the public GitHub repository 

https://github.com/drugilsberg/interact/tree/master/examples/ipc. 

 

5.4 Future work

The European Genome-phenome Archive (EGA) is one the largest European platforms for sharing 
and reusing genetic and phenotypic data resulting from biomedical research projects. Many of the 
studies in EGA are fundamental to support research in paediatric oncology and the objectives of the 
iPC project. Although metadata querying is the most common way to retrieve EGA datasets, the 
inherent fuzziness of categorical descriptors, as well as the presence of synonyms and similar 
concepts, make this practice extremely inefficient. 

In the next future, we aim to leverage the components of the iPC text mining workflow to increase 
the efficiency of the EGA metadata query system. In particular, the generation of word embeddings 
capturing the content of the available metadata can be used to model and expand the queries. 
Graph-based machine learning approaches applied on the network representations of the extracted 
information can provide ranked lists of relevant concepts. Such concepts can be mapped into the 
word embeddings in order to retrieve similar ones and provide supplementary terms to enrich the 
query. The expanded query can be finally used to search among all the available datasets and the 
results ranked according to relevance.

 

  

https://github.com/drugilsberg/interact/tree/master/examples/ipc
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Chapter 6 Summary and Conclusion

The document reports on the development of a unified text mining workflow for information extraction 
in paediatric oncology. The iPC text mining workflow is based on distinct components of existing text 
mining tools that we previously designed, called MelanomaMine and LimTox, dedicated to specific 
areas of applications of cancer research, namely melanoma research and liver toxicology, 
respectively. Both MelanomaMine and LimTox have been employed in additional works related to or 
supported by the iPC project. 

The iPC text mining workflow enables the automatic extraction of mentions of bio-entities (genes, 
proteins, drugs, diseases and others) and their associations, allowing to unify and interpret 
biomedical information of text sources and to further analyze it with complementary NLP approaches 
(e.g., INtERAcT). Moreover, it facilitates the generation of network representation of the text mined 
information for further utilization in other iPC work packages, specifically WP4 (“Network-based 
meta-analysis of multi-omics and text-mined data”), in order to integrate it with clinical and molecular 
information of multi-omics datasets available within the iPC consortium. 

Three use cases where the iPC text mining workflow have been used are reported, namely the 
generation of multilayer community trajectories of text mined medulloblastoma genes, and the 
creation of network representations of text mined information as well as the inference of protein-
protein interactions with INtERAcT based on the word embeddings of the main five paediatric 
cancers studied by the iPC consortium. In the future, components of the iPC text mining workflow 
will be used to improve the EGA metadata query system. 
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List of Abbreviations  

Abbreviation Translation 

NLP Natural Language Processing 

WEX Watson Explorer 

TAC Text Analytics Catalog 

CBOW Continuous Bag-Of-Words 

MeSH Medical Subject Headings 

IE Information extraction 

EHR Electronic Health Record 

NER Named Entity Recognition 

EGA European Genome-phenome Archive 

PTC PubTator Central 

CMM Cutaneous Malignant Melanoma 

SVM Support Vector Machine 
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