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Executive Summary 

D4.1 report describes the techniques for network inference used in iPC and their application to a 
selection of paediatric patient cohorts at different omic levels. The goal of the deliverable is to 
generate the networks that will be used in the downstream WP4 tasks as well as the other project 
activities involving the usage of networks. 

D4.1 provides a set of computational tools for generating molecular and patient networks, assembled 
in a computational pipeline 

D4.1 provides a computational data resource containing already computed molecular and patient 
networks constructed for several paediatric cancer types analysed in the project. 

 

“Data” or “Omic data” is defined as experimental measurement of a set of molecular entities of 
interest, e.g., gene expression (transcriptomic) data, methylation data, etc. 

“Network” is defined as a set of connected entities, be it patients or molecular entities (e.g., genes, 
proteins, etc.), in a graph structure composed by a set of nodes and a set of edges. 

“Network inference” is defined as a methodology aimed to reconstruct a network from data. 
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Chapter 1 Introduction 

High-throughput technologies enabled the measurement of thousands of molecular entities and 
allowed an unprecedented resolution in the investigation of the internal regulatory apparatus of the 
cell. 
 
Such technological advances translated into the need for appropriate methodologies, named 
network inference methods, that can be employed to analyze the data produced and transform the 
readouts from biological samples into organized maps of interaction. 
 
These methods can play a dual role: on one hand, they allow us to build graph of interactions 
between the measured entities, enabling a deeper understanding of the molecular mechanisms 
underlying a disease; on the other hand, they can be used to construct sample, i.e., patient, similarity 
maps, allowing to define complex subtypes and subpopulations. 
 
In this report, we describe three main results achieved during the work on this deliverable: 
 

1) Implementing and validating COSIFER: a tool for computing networks of statistical 
associations between molecular profiles, based on winner methods from the DREAM 
challenge on biological network inference (Manica et al., 2020) 
 

2) Building a pipeline for creating the collection of molecular and patient similarity networks, 
based on application of multiple computational methods, collected in the COSIFER package 
as well as the methods for integrating these networks together, using multi-omics datasets 
as input 
 

3) Creating an initial corpus of paediatric cancer-specific networks computed on four cancer 
datasets relevant for the iPC, three of which are multi-omics datasets 

 
The deliverable report is structured as follows. In the Chapter 2, we provide a description of the 
datasets considered for creating the initial set of paediatric cancer-specific networks. In Chapter 3, 
we describe COSIFER and the methods adopted for the analysis of the cohorts included in the study. 
In Chapter 4, we summarize the results of the application of the methods to selected paediatric 
cancer datasets, providing more details for one particular dataset. Finally, in the conclusion chapter, 
we summarize the achieved results and lay out a plan definition for the exploitation of the generated 
networks in upcoming project deliverables. 
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Chapter 2 Datasets used to produce the initial set of 

paediatric cancer-specific networks 

We considered 4 multi-omics datasets from three paediatric tumors, namely one from Ewing 
sarcoma, two medulloblastoma and one neuroblastoma. The Ewing sarcoma data consists of gene 
expression profiles from 117 patients (Postel-Vinay et al., 2012). The medulloblastoma datasets 
come from two different cohorts of patients. The first, described in detail in (Forget et al., 2018) 
consists of gene expression, methylation, proteomic and phospho-proteomic profiles from 38 
patients (with missing values); the second, described in detail in (Cavalli et al., 2017), consists of 
gene expression and methylation profiles from a cohort of 763 patients. The neuroblastoma dataset 
(Henrich et al., 2016) consists of microarray-based comparative genomic hybridization (aCGH), 
gene expression and methylation profiles from a cohort of 105 patients. 

All datasets have been homogenized in terms of gene identifiers. All datasets but the 
medulloblastoma from (Forget et al., 2018) were downloaded from the R2 repository 
(https://hgserver1.amc.nl/cgi-bin/r2/main.cgi). 

 

Table 1. Datasets used in the work on D4.1 

Tumor type Omics data Num. genes Samples Reference 

Medulloblastoma Phospho-proteomics 4,476 
(gene x sites) 

35 (Forget et al., 
2018) 

Proteomics 3,892   

Methylation 23,348   

Gene expression 30,257   

Medulloblastoma Methylation 18,144 763 (Cavalli et al., 
2017) 

Gene expression 18,479   

Ewing sarcoma Gene expression 17,789 117 (Postel-Vinay et 
al., 2012) 

Neuroblastoma aCGH 112 105 (Henrich et al., 
2016) 

Methylation 18,421   

Gene expression 19,320   

 

https://hgserver1.amc.nl/cgi-bin/r2/main.cgi
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Chapter 3 Pipeline for computing and analysis of 

paediatric cancer-specific networks 

3.1 COSIFER package for computing networks of statistical associations between 
molecular profiles 

COSIFER, is a package and companion web-based platform to infer molecular networks from 
expression data using state-of-the-art consensus approaches. COSIFER includes a selection of 
state-of-the-art methodologies for network inference and different consensus strategies to integrate 
the predictions of individual methods and generate robust networks. 

 

 

Figure 1. COSIFER workflow.  

COSIFER implements 10 different unsupervised network inference methods and 3 integration 
strategies to produce a high-confidence consensus network. In addition, COSIFER implements 
several utilities to preprocess data including: on-the-fly decompression based on file extension, data 
standardisation, mean imputation (imputation of missing values using the mean of the measured 
data) and the possibility of inferring pathway-specific networks if the user provides a .gmt file. A user 
can select different preprocessing approaches, inference methods and consensus strategy to 
process expression data, and COSIFER returns pairwise interaction networks between the 
measured molecular entities. The resulting consensus network as well as single-method inferred 
networks are stored as edge lists in gzipped .csv format. The edge list is composed of triplets, listing 
the interacting entities and the interaction intensity, which is a real value ∈ [0,1] associated with the 
strength of the predicted interaction. No threshold is applied to the output. 

 

3.1.1 Inference methods 

COSIFER implements 10 unsupervised inference methods. Algorithms have been chosen based on 
their inference performance, as reported in the literature (Iyer et al., 2017; Maetschke et al., 2014; 
Marbach et al., 2012), as well as their distinctive theoretical foundations, a key aspect for robust 
performance of consensus networks (Dietterich, 2000). Thus, COSIFER comprises methods based 
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on correlation, mutual information, regression, tree ensembles and functional χ2-test based 
methods. 

An extensive list of the methods is reported in Table 2, we refer to the original publications for the 
details of each method or to the supplementary of COSIFER available online at Bioinformatics (here). 

 

Table 2. Methods for computing statistical associations between molecular profiles implemented in 
COSIFER. 

Method Source 

Correlation  

Pearson’s correlation coefficient (Butte & Kohane, 1999; Pearson, 1895),  

Spearman’s correlation coefficient (Butte & Kohane, 1999; Spearman, 1987) 

Mutual Information  

ARACNE (Margolin et al., 2006; Meyer et al., 2008) 

CLR  (Faith et al., 2007; Meyer et al., 2008) 

MRNET (Meyer et al., 2007, 2008) 

Regression  

GLasso (Friedman et al., 2008) 

TIGRESS (Haury et al., 2012) 

Other Approaches  

JRF (Petralia et al., 2016) 

FunChisq (Zhang & Song, 2013) 

GENIE3 (Huynh-Thu et al., 2010) 

 

3.1.2 Consensus methods 

In a seminal work (Marbach et al., 2012), it has been shown that, assuming independence between 
individual methods, specifically between the ranks of the scores associated to edge predictions, 
allows to exploit the central limit theorem resulting in an average rank distribution that approaches a 
Gaussian distribution whose variance shrinks with the number of predictions, i.e., methods 
considered. This guarantees that a consensus approach can approximate accurately and robustly 
the latent edge distribution given a set of independent methods. 

In COSIFER we take advantage of this notion by providing different consensus methodologies 
alongside the single inference methods presented above. The consensus methods implemented 
acts on the output of the single methods in the form of weighted adjacency matrices, i.e., real-valued 
matrices, where the elements indicate the strength of an interaction. In consensus mode, the 
matrices are first scaled between in a unitary interval using min-max scaling, to ensure they are 
comparable, and then combined using one of the available methodologies. 

The methods implemented are: i) the Wisdom of the Crowds (WOC) (Marbach et al., 2012), where, 
by averaging the rank of the interactions predicted by each method and assigning a zero rank to 
those interactions not predicted by a method, we implement a voting scheme that is used to build 
the consensus network; ii) WOC (hard), a variant WOC that is computing averages based on the 
number of methods that actually predicted an interaction, hence explicitly accounting for sparsity of 
the networks inferred by the individual methods; iii) Similarity Network Fusion (SNF) (Wang et al., 
2014), a method that uses a sparse kernel approximation of the similarity matrices that represent 
the interactions in an iterative process that converges to the resulting aggregated network and iv) 
SUMMA (Unsupervised Evaluation and Weighted Aggregation of Ranked Predictions) (Ahsen et al., 
2018), an ensemble learning algorithm, completely unsupervised, that estimates the AUROC (Area 
under the Receiver Operating Characteristic) of each single inference method and associates a 
weight to each method proportional to its estimated AUROC. The consensus network edge 
intensities/score are the ones directly predicted from the different methods. 

All methods are reported in Table 3 with associated references. 

https://doi.org/10.1093/bioinformatics/btaa942
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Table 3. Methods for computing consensus networks implemented in COSIFER 

Method Source 

WOC (Marbach et al., 2012) 

WOC (hard) (Marbach et al., 2012) (averaging over existing predictions) 

SNF (Wang et al., 2014) 

SUMMA (Ahsen et al., 2018) 

 

3.1.3 COSIFER availability 

COSIFER is available as a pip-installable Python package distributed under MIT license conditions 
via GitHub. The library implements utilities, functions and classes to handle different types of 
expression data for network inference and consensus network prediction in multiple formats. 
COSIFER follows object-oriented programming principles allowing an easy extension and addition 

of new inference methods. Upon installation the command cosifer is made available. The 

command takes as input a symbol-separated file (e.g. .csv, .tsv, etc.) containing omic data, and 
generates an output folder where the single/consensus inference methods results are stored as an 
edge list in a compressed .csv format. This ensures compatibility with most popular graph processing 
and visualization libraries. 

The command allow the user to tweak different aspects of the data processing and inference 
pipeline: data standardization control; orientation of the data matrix (samples on rows or columns); 
inference method selection as well as the consensus method of choice; and optionally, provide a 
.gmt file to perform inference on all the gene sets of interest. For more details on COSIFER module 
and the script usage, we include in the deliverable the user guide, that is also available online (here). 

To broaden its adoption, COSIFER is also available as a docker image on Docker Hub: 
https://hub.docker.com/r/tsenit/cosifer. The docker image is used as the basis for a Binder-hosted 
notebook, that shows an example how to parallelize inference workflows using COSIFER. 

To ease its usage for experimental scientists, COSIFER is also available as a login-free service on 
IBM Cloud at https://ibm.biz/cosifer-aas. The web application integrates basic functionalities, such 
as data upload/processing and choice of inferences as well as consensus methods. Given the 
hosting server computational limitations, only WOC, WOC (hard) and SUMMA are available on the 
web GUI. The GUI allows selection of molecular entities of interest and supports interactive network 
visualization. A tutorial on how to use COSIFER web GUI is available here. 

The manuscript describing the functionality of COSIFER has been published in Bioinformatics 
journal, with acknowledgements from iPC project, and available under open access: 
https://doi.org/10.1093/bioinformatics/btaa942. 

 

3.2. Pipeline for network-based analysis of multi-omics datasets 

3.2.1. General description of the pipeline 

Figure 2 represents a diagrammatic view of the workflow developed for D4.1 to construct both 
molecular and patient similarity networks from a set of multi-omics profiles. The workflow uses 
several tools: 

1) COSIFER package for computing networks of statistical associations between molecular 
profiles, using multiple methods. 

2) Standard community detection algorithm using Markov Clustering (MCL). 
3) Standard gene enrichment tool used in order to define the biological meaning of the 

communities and make a selection of them. 
4) ROMA analysis which quantifies a table of eigengene scores from identified communities, 

which is used by COSIFER in order to construct the patient similarity network. 

https://github.com/PhosphorylatedRabbits/cosifer
https://phosphorylatedrabbits.github.io/cosifer/index.html
https://hub.docker.com/r/tsenit/cosifer
https://mybinder.org/v2/gh/PhosphorylatedRabbits/cosifer/HEAD?filepath=examples%2Finteractive%2Fdemo.ipynb
https://mybinder.org/v2/gh/PhosphorylatedRabbits/cosifer/HEAD?filepath=examples%2Finteractive%2Fdemo.ipynb
https://ibm.biz/cosifer-aas
https://ibm.biz/cosifer-aas
https://sysbio.uk-south.containers.mybluemix.net/cosifer/tutorial
https://doi.org/10.1093/bioinformatics/btaa942
https://cran.r-project.org/package=MCL
https://cran.r-project.org/package=gprofiler2
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Figure 2. Schema of the WP4 pipeline for constructing paediatric cancer-specific networks from multi-omics 
data. 

 

3.2.2. Construction and analysis of molecular networks 

At the first step of the application of the pipeline, COSIFER package is systematically applied to all 
levels of a multi-omics dataset independently. A consensus across all methods for finding statistical 
associations network is constructed using SUMMA approach, one per each data type, which leads 
to creation of data type-specific consensus networks. All the networks use genes as nodes, and the 
strategy of mapping the molecular profile onto genes can be different for different data types. Thus, 
for methylation profiles, the methylation signal is summarized on the gene level before application of 
COSIFER, while for phospho-proteomics data, COSIFER is applied first at the level of individual 
protein phospho-forms, and then the edges identified for phospho-forms of the same protein are 
merged together, taking the maximum weight as the new edge weight. 

In order to construct the multi-level consensus network, combining the information from many data 
types, we applied the wisdom of crowds approach (Marbach et al., 2012). 

In order to extract key features from the networks inferred using COSIFER (which are very dense 
since they contain all statistically significant associations), we set up an a priori edge-weight 
threshold based on the feasibility of the further network analysis. We therefore created sub-networks 
selecting for the most confident ten thousand gene-gene statistical associations from the initially 
computed COSIFER network. Within the sub-network, we analyze the disconnected components 
separately and we select the largest connected component for further analysis. We analyze the 
statistical properties of these networks, i.e., degree distribution, community structure and the 
biological community function. 

Network communities representing biological modules in the inferred network have been inferred 
using the mcl package in R. Willing to apply the ROMA (Martignetti et al., 2016) method for the 
construction of eigengene profiles, we tuned the inflation parameter of the MCL to have as many as 
possible clusters with more than ten genes. For finding the network communities, two approaches 
can be utilized. First, they can be detected from data type-specific consensus networks, having in 
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mind that for some data types it is almost impossible to define the community structure in the 
corresponding network (see example in further). Second approach consists in defining communities 
from the multi-level consensus network, after application of the wisdom of crowds approach (this 
approach is shown by a dashed line in Figure 2). 

Gene enrichment analysis of the resulting communities has been performed using the gprofiler2 
package in R. 

 

3.2.3. Construction and analysis of patient similarity networks 

In order to construct patient similarity networks from multi-omics data, it is necessary to define a 
metric (distance) between a set of molecular profiles of different types representing the same 
patient/tumor (Pai & Bader, 2018). This task is highly non-trivial and prone to the influence of non-
biological factors affecting the variance of molecular profiles and the differences in the statistical 
properties of molecular profiles of different kinds. Therefore, simple merging of various omics 
measurements appears to be a suboptimal choice for defining the distance. 

In order to define a meaningful metric, in D4.1 we decided to build a new set of features based on 
the analysis of networks representing different levels of multi-omics data, as described in the 
previous section. Each new feature represents a network community extracted from network 
analysis, containing at least 10 genes. In Figure 2, we call network signatures a set of such features. 
For computing the distance between molecular profiles, the user can either use all such communities 
or make an expert-based selection of those communities representing relevant biological functions, 
as indicated by the gene enrichment analysis performed during network analysis. 

The genes composing each community have distinct profiles in each data type. In order to 
summarize their profiles in one score, we applied a well-established approach based on quantifying 
so-called eigengenes, using Representation and Quantification of Module Activity (ROMA) method 
(Martignetti et al., 2016). In brief, ROMA activity quantification is based on the simplest uni-factor 
linear model of gene regulation that approximates the expression data of a gene set by its first 
principal component. As a result of such quantification, a set of omics datasets for each data type 
and a set of network signatures defined per each data type, is summarized in the eigengene table, 
where rows are patients/samples, and the columns are new features (network signatures). The 
eigengene table contains scores of the eigengenes, quantified with the use of ROMA. 

 

All the analysis scripts used for the deliverable that can be used to reproduce the analysis presented 
in the report are available here. 

  

https://data.ipc-project.bsc.es/s/wQHByo32o3JHXwS
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Chapter 4 Collection of paediatric cancer-specific 

networks 

4.1. Creating the initial version of the computational resource as a collection of 
networks for paediatric cancer- 

We’ve applied the constructed pipeline defined in the previous chapter, to four paediatric cancer 
datasets, described in Chapter 2. For each dataset, we created the following items: 

1) Set of data type-specific consensus networks computed with COSIFER, one per each data 
type, containing all statistically significant associations. These networks are generally dense 
and require a significant amount of disk space to store them. 

2) Set of reduced data type-specific consensus networks, containing only top weighted edges. 
These networks are amenable for the further network-based analyses and require much less 
disk space to store them. 

3) Multi-level consensus molecular network, one per the whole multi-omics dataset, resulting 
from application of the wisdom of crowds approach. 

4) Set of network signatures resulting from application of community detection algorithm, for 
each data type-specific consensus network. 

5) Results of gene enrichment analyses for each network community of sufficient size (>10 
genes). 

6) Table of eigengene scores, keeping the results of quantification of network signatures using 
ROMA. 

7) Patient similarity network, computed by applying k-NN to the table of eigengenes. 

All these items for each of the four analyzed paediatric cancer datasets, were stored in the iPC data 
repository: https://data.ipc-project.bsc.es/s/wQHByo32o3JHXwS. 

 

For the purpose of reporting, in the next section, we describe in detail the results of the application 
of the developed pipeline for the network-based analysis of the medulloblastoma dataset from 
(Forget et al., 2018). 

 

4.2. Example network-based analysis of the multi-omics data for medulloblastoma 

The multi-omics dataset from (Forget et al., 2018) is a relatively small (35 samples) paediatric cancer 
dataset but it has the advantage of containing four levels of data types, amenable for the network-
based analysis (gene expression, protein expression, DNA methylation and phospho-proteomics 
levels). In the further we provide details of D4.1 pipeline application to this dataset at the individual 
data type levels for the analysis of molecular networks and construction of patient-patient similarity 
networks. 

 

4.2.1. Level of protein expression 

The complete network, computed by COSIFER, consisted of 3,892 nodes and 7,211,426 edges, 
which was too dense to apply network-based analysis. The subgraph obtained by considering the 
10^5 strongest statistical associations contained 3,316 nodes. Within the subgraph there are 2 

https://data.ipc-project.bsc.es/s/wQHByo32o3JHXwS
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connected components, the largest one consisting of 3,314 nodes. The distribution of weights for 
both complete and reduced networks is shown in Figure 3. 

 

Figure 3. Distribution of edge weights for SUMMA inference network and the reduced subnetwork for the 
protein expression level of the medulloblastoma dataset. 

We applied the standard MCL algorithm in order to identify network communities in the reduced 
network. The main parameter in the application of this algorithm is inflation, which defines the 
granularity of the resulting communities. Therefore, we need to optimize this parameter and in order 
to do this we used the following criterion: the number of communities containing more than 10 genes. 
Optimizing this criterion allows us to achieve better interpretability of the resulting communities. For 
example, MCL clustering with inflation parameter equal to 1.8 allows us to identify 45 clusters 
(network communities) with more than 10 genes. With this criterion we obtain 399 communities 
among which 136 were composed by just 2 genes. The distribution of the number of genes found in 
the clusters is shown in Figure 4. 

 

Figure 4. A) Inflation parameter versus the number of clusters with more than 10 genes in the 
medulloblastoma network, computed for protein expression data. B) Histogram representing the frequency of 

clusters for a given number of genes. 
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The largest community consists of 656 nodes and is enriched in proteins linked to the spliceosome, 
exocyst Sec6/8 complex, Exocyst complex, SF3b complex and THO complex. The second largest 
community, composed of 348 nodes, was found to be enriched in proteins involved in EIF3 complex, 
cellular component organization or biogenesis, ribonucleoprotein complex biogenesis and viral 
process. ROMA was applied with the 45 network communities (clusters) with more than 10 genes. 
The resulting eigenGene matrix consists of 39 eigengenes and 35 samples. Visualization of these 
communities annotated with gene enrichment analysis results is provided in Figure 5. 

 

Figure 5. Network communities identified at the level of protein expression in the analysis of 
medulloblastoma dataset.  

 

In Figure 5 each circle represents a community, annotated by the results of gene enrichment 
analysis. The connections between genes belonging to different communities are also shown. 
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4.2.2. Level of DNA methylation 

The complete network computed by COFISER consisted of 23,348 nodes and 215,023,696 edges. 
The subgraph obtained by considering the 10^5 strongest interactions consisted of 3,704 nodes. 

 

Figure 6. Distribution of edge weights for SUMMA inference network and the reduced subnetwork for the 
DNA methylation level of the medulloblastoma dataset. 

 

Within the subgraph, there were no disconnected components. MCL clustering with inflation 
parameter equal to 1.8 leads to 29 clusters with more than 10 nodes (Figure 7A). The distribution of 
cluster cardinality is shown in Figure 7B. It identified 344 communities. The largest one consists of 
1,641 genes, whereas 150 communities consisted of only two genes.   

 

Figure 7. A) Inflation parameter versus the number of clusters with more than 10 genes in the 
medulloblastoma network, computed for DNA methylation data. B) Histogram representing the frequency of 

clusters for a given number of genes. 
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The largest component was associated with localization, transport and the nervous system. The 
second largest connected component consisted of 287 nodes and consisted of genes associated 
with the RUNX1-CBF-beta-DNA complex, Factor: ZF5. Overall communities were associated with 
specific gene complexes and functions. Among the inferred communities with more than 10 nodes 
only one could not be associated with a biological function. Enrichment results are summarized in 
Figure 8.  

 

Figure 8. Network communities identified at the level of DNA methylation in the analysis of medulloblastoma 
dataset.  

 

In Figure 8 each circle represents a community, annotated by the results of gene enrichment 
analysis. The connections between genes belonging to different communities are also shown. 

ROMA was thus applied on the 29 clusters with more than 10 genes. The resulting eigenGene matrix 
consists of 25 eigenGenes and 35 samples. 

 

4.2.3. Level of gene expression 

For gene expression data, the complete network computed by COFISER consisted of 30,257 nodes 
and more than 4*10^8 edges. The subgraph obtained by considering the 10^5 strongest interactions 
was connected and consisted of 4,889 nodes. 
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Figure 9. Distribution of edge weights for SUMMA inference network and the reduced subnetwork for the 
gene expression level of the medulloblastoma dataset. 

 

MCL clustering with inflation parameter equal to 1.7 leads to 88 clusters with more than 10 nodes 
(Figure 10A). It identified 644 communities, the largest one consisting of 837 genes, whereas 186 
communities consisted of only two genes. The distribution of cluster cardinality is shown in Figure 
10B.   

 

Figure 10. A) Inflation parameter versus the number of clusters with more than 10 genes in the 
medulloblastoma network, computed for gene expression data. B) Histogram representing the frequency of 

clusters for a given number of genes. 

 

The largest community was enriched in genes associated with chemical homeostasis, intrinsic 
component of plasma membrane, plasma membrane region, integral component of plasma 
membrane, ion channel complex. The second largest community consists of 66 genes and is 
associated with 3'-5' DNA helicase activity, four-way junction helicase activity and lymph node 
function. 
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EigenGenes were calculated using 88 clusters, 6 of which were filtered out after outliers detection. 
The resulting matrix consisted of 82 eigen genes and 35 samples.  

 

4.2.4. Level of phospho-proteomics 

The complete network computed by COFISER consisted of 4,476 nodes and 9,703,387 edges. The 
subgraph obtained by considering the 10^5 strongest interactions consisted of 3,220 nodes.

 

Figure 11. Distribution of edge weights for SUMMA inference network and the reduced subnetwork for the phospho-

proteomics level of the medulloblastoma dataset. 

MCL clustering with inflation parameter equal to 1.8 leads to 54 clusters with more than 10 nodes 
(Figure 10A). It identified 173 communities, the largest one consisting of 438 genes, whereas 109 
communities consisted of only two genes. The distribution of cluster cardinality is shown in Figure 
10B.  

EigenGenes were calculated using 54 clusters, 2 of which were filtered out after outliers detection. 
The resulting matrix consisted of 52 eigen genes and 35 samples. 

 

Figure 12. A) Inflation parameter versus the number of clusters with more than 10 genes in the 
medulloblastoma network, computed for phospho-proteomic data. B) Histogram representing the frequency 

of clusters for a given number of genes. 
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4.2.5. Patient-Patient similarity network 

Patient-patient similarity network has been constructed using as an underlying truth the eigenGene 
matrices produced at the individual level. Indeed, a preliminary PCA analysis of the eigen gene 
matrices shows that the 4 different medulloblastoma are characterized at each individual level by a 
combination of eigengenes (Figure 13). 

 

Figure 13. Principal component analysis for the samples x eigengenes matrices retrieved using ROMA at 
each individual level. Samples are colored according to the medulloblastoma subtype they belong to. 

 

Specifically, eigenGene matrices are concatenated to produce a global description of the samples, 
that resulted in a matrix of 35 samples and 198 eigenGenes (39 from proteomic level, 52 from 
phospho-proteomic, 25 from methylation and 82 from gene expression level).  

Using as a metric the Euclidean distance between samples, we computed the K-nearest neighbor 
graphs for different values of k (Figure 14). We see that the k-NN network allows to cluster samples 
from the 4 well known medulloblastoma subgroups namely WNT, SHH, G3 and G4.   
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Figure 14. Patient similarity networks obtained using k-NN the concatenated eigen gene matrix using as a 
metric the Euclidean distance between samples, for k = 3, …, 11. Color codes: WNT blue, SHH red, G3 

yellow, G4 green. 
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Chapter 5 Conclusions and future work 

The work on this deliverable produced the required methodology for the network-based analysis of 
paediatric cancer multi-omics datasets, and the first version of paediatric cancer-specific network 
data. Therefore, the objectives of D4.1 have been fully accomplished. 

In the future the initiated collection of network resources will be extended with the analysis of other 
paediatric cancer datasets, from the same types considered in D4.1 or other types (in particular, 
leukemia and hepatoblastoma). A particular interest is applying the network analysis pipeline 
developed for bulk datasets, to single cell data which are becoming increasingly available for the 
specified paediatric datasets. The extended collection of networks will be used to define molecular 
mechanisms driving the paediatric cancer progression, as a part of the work on D4.3, and for refining 
the definition of molecular subtypes of paediatric cancers as a part of the work on D4.4.  

In the framework of iPC, network-based analysis will be compared with the results of application of 
matrix factorization methods (part of WP3). The constructed networks should be a valuable resource 
for the mathematical modeling efforts within iPC project.  

The network communities computed and stored in the iPC project database will be exposed to the 
final user for interactive online browsing with the use of NaviCell network visualization platform, with 
a possibility to visualize various sources of omics data on top of the network visualization. This will 
be accomplished as a part of D4.2. 

To demonstrate the analytical advantage of network representation for paediatric cancer-specific 
datasets, we anticipate here initial results of the application of a new methodology for the functional 
analysis of the medulloblastoma proteogenomic dataset described in the previous sections (Forget 
et al., 2018). In particular, we have developed a methodology for dimensionality reduction, based on 
multilayer network community detection (Didier et al., 2015), aiming to facilitate the molecular 
characterization of patient stratification. This graph-based approach allows to identify the minimal 
set of genes that characterize disease subgroups based on their persistent association in the 
multilayer network at different levels of community resolution. By applying this method, we have 
achieved a highly accurate reconstruction of the known medulloblastoma subtypes (accuracy > 94%) 
while offering a clear characterization of the associated gene functions, with downstream 
implications for diagnosis and therapeutic interventions. More details about this work, which is 
currently under review by a scientific publisher, will be provided in the next deliverable D4.2. 

The applicability and benefits of network-based approaches to multi-omics data integration are 
demonstrated by the development of efficient computational tools for the analysis and interpretation 
of large volumes of heterogeneous biomedical data. Nevertheless, graph representation of big data 
entails challenges and obstacles which are mainly related to the processing and analysis of highly 
dense networks. In this regard, recent algorithmic implementations, such as methods for graph 
sparsification, allow overcoming the difficulties associated with these aspects. Graph sparsification 
aims to approximate an arbitrary graph, such as a large and densely connected graph, by a graph 
with fewer edges or vertices while maintaining essential structural properties. Graph sparsification 
methods with direct applications in the biomedical area, such as the disparity filter algorithm (Serrano 
et al., 2009) and the distance closure algorithm (Simas & Rocha, 2015), provide a robust frameworks 
for studying highly dense networks which can be conveniently used in the context of iPC network-
based analytical workflows as a part of D4.2 or further deliverables. 
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