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Abstract 

Computational deconvolution of bulk RNA-sequencing 
data to infer cell type composition of a sample is 
challenging. Benchmarking of various computational 
deconvolution tools revealed various data processing 
parameters that impact deconvolution accuracy and 
revealed the importance of a complete reference matrix. 
As a complete reference matrix is often not available, an 
algorithm was designed that can handle missing cell 
types. This algorithm can be applied to establish the 
immune cell repertoire of primary tumor biopsies without 
prior knowledge of the full spectrum of cell types in the 
biopsy. 
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Executive Summary 

 

Computational deconvolution of bulk RNA-sequencing data to infer cell type composition of a sample 

is challenging. First, a benchmarking of various computational deconvolution tools revealed various 

data processing parameters that impact deconvolution accuracy and revealed the importance of a 

complete reference matrix. Next, as a complete reference matrix is often not available, a framework 

that can handle missing cell types has been implemented. It can be applied to establish the immune 

cell repertoire of primary tumor biopsies without prior knowledge of the full spectrum of cell types in 

the biopsy. 

The procedure starts from the assumption that the reference matrix is not complete (ie not 

representative of all cell types in the mixture) and, from the available bulk RNA-sequencing data, will 

search for genes that serve as markers for the missing cell type(s). Having established these genes, 

their expression levels in the (aggregated) missing cell type(s) are estimated and added to the new 

reference matrix that can now be applied for computational deconvolution using a suitable method. 

We have benchmarked the performance of this algorithm using pseudo-bulk mixtures (= with known 

composition) from single cell RNA-sequencing data. This procedure can be applied to establish the 

immune cell repertoire from bulk RNA-sequencing data of (pediatric) tumor samples biopsies. 
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Chapter 1 Benchmarking deconvolution workflows 

 

Before establishing a deconvolution workflow (ie. software) to determine the immune cell repertoire 
of pediatric tumor samples, we first performed a thorough benchmarking study of various algorithms 
and several data processing parameters. Many computational methods have been developed to 
infer cell type proportions from bulk transcriptomics data. However, an evaluation of the impact of 
data transformation, pre-processing, marker selection, cell type composition and choice of 
methodology on the deconvolution results was lacking in literature. Using five single-cell RNA-
sequencing (scRNA-seq) datasets, we generated pseudo-bulk mixtures to evaluate the combined 
impact of these factors (Figure 1, Avila Cobos et al., Nature Communications, 2020). We found that 
both bulk deconvolution methodologies and those that use scRNA-seq data as reference perform 
best when applied to data in linear scale and the choice of normalization has a dramatic impact on 
some, but not all methods (Figure 2). Overall, methods that use scRNA-seq data have comparable 
performance to the best performing bulk methods whereas semi-supervised approaches show 
higher error values.  

We then selected nnls and CIBERSORT as representative top-performing bulk deconvolution 
methods and assessed the impact of removing a specific cell type by comparing the absolute RMSE 
values between the ideal scenario where the reference matrix contains all the cell types present in 
the pseudo-bulk mixtures and the RMSE values obtained after removing one cell type at a time from 
the reference. We then focussed on those cases where the median absolute RMSE values between 
the results using the complete reference matrix and all other scenarios where a cell type was 
removed, increased at least 2-fold. In the PBMC dataset, removing CD19+, CD34+, CD14+ or NK 
cells all had an impact on the computed T-cell proportions (between a three and six-fold increase in 
the median absolute RMSE values, Figure 3). Similar results were observed in other datasets, and 
none of the method and normalization combinations was able to provide accurate cell type proportion 
estimates when the reference was missing a cell type. From these analysis, we concluded that failure 
to include cell types in the reference that are present in a mixture leads to substantially worse results, 
and none of the available deconvolution procedures is capable of properly dealing with such a 
scenario. Nevertheless, we expect such scenarios to occur frequently when dealing with tumor 
biopsies. In order to establish a complete reference matrix for a given (pediatric) tumor type, single 
cell RNA sequencing data of representative (bulk) samples of that tumor can provide insights in the 
cellular composition and guide selection of marker genes to establish a comprehensive reference 
matrix. However, in case of (extensive) tumor heterogeneity or differential stromal composition, the 
number of single cell RNA-sequencing datasets required to capture the entire spectrum of cell type 
compositions for a given tumor type could become (very) large. Therefore, a computational 
deconvolution algorithm that can cope with missing cell types would be highly beneficial.  

For applications aiming to establish the fraction of the most important immune cell subtypes in a 
tumor biopsy (i.e. immune cell deconvolution), a reference matrix containing immune cell markers 
only, combined with a deconvolution workflow capable of handling missing cell types (namely the 
tumor fraction and other component(s)), could potentially be applied to any bulk (pediatric) tumor 
RNA-sequencing dataset. We therefore decided to develop a dedicated deconvolution workflow that 
is not affected by missing cell types in the reference.  

The software that was developed to benchmark deconvolution methodologies and generate 
pseudobulk mixtures has been published on Github: github.com/favilaco/deconv_benchmark 
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Figure 1. Schematic representation of the benchmarking study.  

 

Top panel: workflow for bulk deconvolution methods. Bottom panel: workflow for deconvolution 
methods using scRNA-seq data as reference. In both cases the deconvolution performance is 
assessed by means of Pearson correlation and root-mean-square error (RMSE).  
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Figure 2. Combined impact of data normalization and methodology on the deconvolution results. 

 

RMSE and Pearson correlation values between the expected (known) proportions in 1000 pseudo-
bulk tissue mixtures in linear scale (pool size = 100 cells per mixture) and the output proportions 
from the different bulk deconvolution methods (a). The darker the blue and the higher the area of the 
circle represents higher Pearson and lower RMSE values, respectively. (b) Scatter plot showing the 
impact of the normalization strategy (TMM versus quantile normalization (QN)) comparing the 
expected proportions (y-axis) and the results obtained through computational deconvolution using 
nnls (x-axis). 
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Figure 3. Effect of cell type removal on the deconvolution results for the PBMCs dataset (100-cell mixtures; 
linear scale). 

 

Results using bulk deconvolution methods (nnls and CIBERSORT). Each gray column represents a 
specific cell type removed. Each data point conforming a boxplot represents a different 
scaling/normalization strategy used.   
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Chapter 2 Identifying markers for missing cell types 

 

The first challenge when designing a computational deconvolution workflow that can handle missing 
cell types is to identify marker genes for those missing cell types. To this end we hypothesized that 
genes deviating from the general linear model (= with poor fit) would both marker genes for the 
unknown cell type and markers (among the known cell types) that we failed to include in the original 
reference matrix (Figure 4).  

To find those genes with poor fit (outliers, genes with high leverage, etcetera) we used several 
quantitative metrics: Cook’s distance; studentized Difference in Fits (DFFITS); studentized residuals 
and covariance ratios. In short, most of these metrics intrinsically delete one observation (gene) at 
a time from the reference matrix, re-fit the regression model on remaining (n−1) observations and 
examine how much all of the fitted values change when the ith observation is deleted. 

 

Figure 4. Investigating those genes with poor fit in a scenario where one cell type (beta) is missing in the 
reference matrix but actually present in the mixtures. 

 

By going back to a full reference matrix (= all cell types present, including beta cells), we identified 
the two entities we initially hypothesized: a set of genes that were found to be markers for the 
unknown cell type (blue square, bottom part of the heatmap) and another set that were found to be 
markers that were not initially included in the reference matrix. 

 

Finally, to obtain expression values for the entire “unknown” column we re-purposed ISOpureR 
(Anghel et al., 2015), which was originally designed to decompose a patient’s particular tumour 
mRNA abundance profile into its cancer and healthy profile components. Instead, by using a reduced 
version of both the heterogeneous mixtures and the incomplete reference matrix, we obtained the 
unknown-specific expression profile that is finally appended to the initial reference matrix and is used 
in a second step with conventional computational deconvolution methods such as CIBERSORT 
(Newman et al., 2015). 
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Chapter 3 Validating and benchmarking the novel 
workflow 

 

We defined as “complete” the scenario where the reference matrix contains all cell types present in 
the mixtures and “incomplete” where a cell type was missing in the reference. Furthermore, we 
labelled as “new” our proposed approach described in Chapter 2. These three reference matrices 
were used as input for CIBERSORT. 

Furthermore, we included EPIC, another state-of-the-art computational deconvolution method which 
attempts to include the proportion of an unknown cell type present in the mixture by using markers 
of non-malignant cells that are not expressed in cancer cells. 

The results of our analyses are shown in Figure 5 and depict a better performance (lower RMSE and 
higher Pearson correlation values) of our proposed framework (panel III) compared to situations 
where the reference is incomplete or where EPIC is used (panels II, V and VI). Panel III also shows 
a similar performance compared to scenarios where the reference matrix is complete (panels I and 
IV). 

 

Figure 5. Validation and benchmarking of the novel workflow using pseudo-bulk mixtures from 10x scRNA-
seq data of peripheral blood mononuclear cells (PBMCs) where CD56+ natural killer cells were artificially 

removed from the reference matrix. 
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Each row represents a given cell type and depicts a scatter plot between the expected (known) cell 
type proportions and the observed proportions (= output from the computational deconvolution). 
Panels I to III: “complete”, “incomplete” and “new” reference matrices as input for CIBERSORT; 
Panels IV to VI: EPIC with three different reference matrices: “complete”, “incomplete” and using the 
set of genes with poor fit described in Chapter 2. P = Pearson correlation; RMSE = root mean square 
error. 
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Chapter 4 Application of novel deconvolution 
workflow to pediatric tumor datasets 

 

Having established a novel deconvolution workflow to establish the immune cell repertoire using bulk 
RNA-sequencing data of a tumor sample, we started to build and apply dedicated models for 
pediatric cancer datasets, collected within iPC. An overview of these available datasets is provided 
in Table 1. Note that these datasets are also applied for deliverable 3.1, aiming to apply 
deconvolution by matrix factorization. 

  

 
Number bulk datasets (number of 
samples) 

Number of single cell datasets (number of 
cells)  

 patient  adult  patient  control  

ES  5 (432)  
 

 1 (96)  

MB  7 (1,743)  2 (696)  25 (7,745)  
 

NB  4 (804)  
 

28 (146,800)  9 (63,776)  

HB  3 (134)  1 (373)  
 

 

Table 1. Description of the datasets collected for each tumor type. ES = Ewing sarcoma; MB = 
Medulloblastoma; NB = Neuroblastoma; HB = Hepatoblastoma. 

  

In order to establish dedicated models for neuroblastoma, we first started with the integration of two 
different 10x scRNA-seq datasets from Dong et al. (2020) and Kildisiute et al. (2021). Figure 6 shows 
the results of this integration. 
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Figure 6. t-distributed stochastic neighbor embedding (t-SNE) representation of the combination of Dong and 
Kildisiute datasets. 

Figure 6A: a clear batch effect is present by merely trying to cluster these datasets as they are. This 
is alleviated by using fast mutual nearest neighbors correction (fastMNN; 
https://github.com/LTLA/batchelor/blob/master/R/fastMNN.R) on two different alternatives: top 5000 
genes with the largest biological components of their variance (Figure 6B) or a set of informative 
genes found by the expression entropy model (S-E method) from ROGUE (Liu et al. (2020)) (Figure 
6C). 

 

In parallel, we have also downloaded and processed 10x scRNA-seq data from PBMCs.  

Our ongoing research has two parallel branches that built upon the framework described in Chapter 
2: a) considering only the scRNA-seq data from PBMCs, the unknown component would account for 
the neuroblastoma tumor signal; b) considering the integrated scRNA-seq neuroblastoma datasets, 
the unknown component would account for both the immune component and other cell types that 
may have not been represented in these but can potentially be present in the bulk RNA-seq 
neuroblastoma samples. 

 

Finally, in collaboration with Pavel Sumazin (iPC partner), we are evaluating our proposed framework 
on pediatric acute myeloid leukemia (AML) data. 
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Chapter 5 Summary and Conclusion 

 

Benchmarking of computational deconvolution workflows revealed the importance of a complete 
reference matrix for accurate deconvolution performance, irrespective of the algorithm. Other 
general guidelines to maximize the deconvolution performance would be keeping their input data in 
linear scale and use a stringent marker selection strategy that focuses on differences between the 
first and second cell types with highest expression values. 

Finally, as more scRNA-seq datasets become available in the near future, its aggregation (while 
carefully removing batch effects) will increase the robustness of the reference matrices being used 
in the deconvolution and will fuel the development of methodologies similar to SCDC (Dong et al.), 
which allows direct usage of more than one scRNA-seq dataset at a time. 

As single cell RNA-sequencing data for pediatric tumors is still scarce, and what is available most 
likely does not represent the entire spectrum of heterogeneity between pediatric patient tumor 
samples, we decided to develop a method that can handle missing cell types in the reference matrix. 
Here, the ultimate goal is to determine the immune profile of individual pediatric tumor samples using 
bulk RNA-sequencing data. To this end, we established and benchmarked a deconvolution workflow 
capable of handling missing cell types (namely the tumor fraction and other component(s)) without 
severe impact on overall deconvolution accuracy for cell types present in the reference matrix. This 
method is being applied to large series of bulk RNA-sequencing data from pediatric patient samples 
available within iPC to establish immune profiles and correlate these to various clinical parameters. 
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Chapter 6 List of Abbreviations  

 

Abbreviation Translation 

scRNA-seq single-cell RNA-sequencing 

RMSE root mean square error 

P Pearson correlation 

DFFITS studentized Difference in Fits 

PBMCs Peripheral Blood Mononuclear Cells 
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