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Disclaimer 

The information in this document is provided “as is”, and no guarantee or warranty is given that the information 
is fit for any particular purpose. The content of this document reflects only the author`s view – the European 
Commission is not responsible for any use that may be made of the information it contains. The users use the 
information at their sole risk and liability. 
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Executive Summary 

 

D8.1 provides a detailed overview of the computational tool proposed for predicting patient-specific 
drugs with potential therapeutic benefits in paediatric cancer treatment.  

D8.1 provides supporting evidence of the model goodness in predicting such patient-specific drugs.  

D.8.1 provides guidelines on how to make better use of the software (principal aim of the deliverable). 

D8.1 touches upon a case study being conducted in collaboration with IGTP and LMU partners 
aiming to identify and prioritize drugs for hepatoblastoma (HB) patients. 
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Chapter 1 Introduction 

The aim of the deliverable is to report on the developed software (implemented in R and integrated 
into the iPCCP) that can generate a list of small molecules with potential therapeutic benefits for 
paediatric cancer treatment.  

 

 

Figure 1: Proposed method workflow. A) Construction of the ranked list of biomarkers. Briefly, for each gene 
and for each drug, the expression of the gene is correlated with the potency of the drug across the common 
cell-lines. Then, the enrichment of the top and bottom 250 expressed genes of each cell against the ranked 

list of biomarkers for each model drug (strategies a-b), and the enrichment of the best 250 marker of 
sensitivity and resistance of each drug against the expression profile of each cell (strategies c-d), is 

evaluated. B) ESs are compared with those resulting from randomized expression profiles. A one-tailed test 
(either left-tailed for strategies a and d or right-tailed for strategies b and c) is performed to assign a 

probability value (p-value) to each ESs. Finally, the “parallel” geometric means of p-values across the 
different strategies is computed to assess the overall efficacy of each drug in each cell. 

 

The proposed method combines bulk gene expression data and drug response data measured in 
cancer cell lines (CCLs) for predicting small molecule inhibitors of cancer cell growth. In details, for 
each gene and for each drug, the correlation between the expression of the gene and the in-vitro 
response to the drug across the common CCLs is computed. Drug responses, expressed either in 
terms of Area Under the Curve (AUC) or half maximal inhibitory concentration (IC50), reflect the 
potency of a drug in inhibiting the growth of a specific cancer cell line, with lower and higher values 
corresponding to cell sensitivity and resistance to the drug, respectively. Hence, the expression 
levels of putative marker genes of drug resistance in certain CCLs are positively correlated with drug 
response values measured in those cells (the more expressed the gene, the higher the drug 
concentration needed to inhibit cell growth, and the opposite); vice versa, a negative correlation 
denotes a putative marker gene of drug sensitivity (Figure 1A). By ranking all the genes according 
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to their correlation coefficient, a drug profile is produced and hereinafter used to predict drug efficacy 
at both cell and patient level. Specifically, to estimate the anticancer effect of that drug on a specific 
cancer cell line whose bulk expression profile has been generated, the enrichment extent of 
top/bottom expressed genes in markers of sensitivity/resistance, and vice versa, is quantified using 
Gene Set Enrichment Analysis (GSEA) [1] (Figure 1A, strategies a-d). Then, for each GSEA strategy, 
the probability of observing smaller/greater enrichment scores (ESs) from randomized expression 
profiles is determined independently. To note that probability directionality depends on the expected 
value, namely negative ESs for strategies a and d, positive for b and c. Last, the geometric mean of 
individual probabilities, G, is computed to assess the overall drug efficacy (Figure 1B). The smaller 
the G- value, the higher the drug efficacy, thereby the likelihood that the cell line is sensitive to the 
drug. Finally, a drug ranked list (from the most to the least effective drug) is derived by applying the 
same pipeline to multiple drug profiles (Figure 1A). 
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Chapter 2 Method validation 

Baseline (i.e., before drug treatment) gene expression data and in-vitro drug response data in CCLs, 
released by both the Broad and Sanger Institutes [2-5], were independently employed to train 
complementary sets of drug profiles following the described methodology. This complementarity 
mostly arose from a different selection of drugs (both targeted and chemotherapeutic compounds) 
being screened in cell proliferation assays at the two Institutes. Specifically, ~44% of the CCLs 
overall profiled (560 out of 1.283 CCLs) and ~8% of the drugs totally screened (61 out of 770 drugs) 
were shared by the analogous datasets (Figure 2).  

 

Figure 2: Validation using the proper model. From top-left to bottom-right corners: Venn Diagrams indicating 
overlap of CCLs and drugs between the Broad and Sanger Institutes; types of CCL responses to drug 

treatment; PPV curves for self, non-self and mixed CCLs-model combinations. 
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Figure 3: Validation using the wrong model. PPV curves for self, non-self and mixed CCLs-model 
combinations. 

For each pair of Broad and Sanger data, two sets of drug profiles were derived considering CCLs 
from solid and liquid tumours, separately. This choice was driven by evidence of selective drug 
sensitivity for either solid or liquid CCLs attributable in part to differential gene expression patterns 
[5]. For simplicity, the sets of trained drug profiles are referred to below as solid and liquid models. 
To assess the predictive ability of these models, the sensitivity of solid CCLs (676 from Broad, 837 
from Sanger, 461 in common) to the drugs of the Broad and Sanger solid models was estimated. 
The same was repeated for liquid CCLs (153 from Broad, 177 from Sanger, 99 in common) using 
liquid models (Figure 2). Each cell line was classified as sensitive, resistant, or neutral to a specific 
compound depending on drug response data, previously employed to generate the models (Figure 
2). The benchmark was carried out ordering cell line-drug pair according to decreasing or increasing 
predicted drug efficacy. Then, the precision value (or Positive Predicted Value, PPV), namely the 
rate of correctly predicted drugs according to cell line sensitivity or resistance, respectively, was 
determined for the first n pairs, with n spanning from the 1st to the 100th percentile of total cell line-
drug pairs. In Figure 2 are shown the PPV curves, normalized against the expected PPV for a 
random ordering of cell line-drug pairs, for self (Broad-Broad, Sanger-Sanger), non-self (Broad-
Sanger, Sanger-Broad) and mixed (Broad/Sanger-Ensemble) CCLs-model combinations. 
Unsurprisingly, the best performances are obtained in self combinations with scores up to 10-fold 
better than random. This is a direct consequence of the “overfit”, since gene expression data used 
to train the models were also used to make predictions. Concerning non-self combinations, a 
significant decrease in drug resistance precision for solid CCLs is observed with the Broad rather 
than the Sanger model. The performances of mixed combinations, instead, are halfway between self 
and non-self, as expected. As a rule, sensitivity is predicted better than resistance and scores for 
liquid CCLs tend to be higher than solid ones. Finally, a negative control was performed by crossing 
solid CCLs with liquid models and the opposite. Results, shown in Figure 3, reveal a random-like 
trend of estimated precisions for each CCLs-model combination following drug efficacy prediction 
with the wrong model. 
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Chapter 3 Software guidelines 

The software is freely available for academic use at https://vre.ipc-project.bsc.es/ under the name of 
DpFrEP (Drug-prediction From Expression Profiles). The following section provides guidelines on 
how to make better use of DpFrEP. 

DpFrEP takes in input three parameters, an input file that needs to be uploaded and two additional 
arguments selected from specific drop-down menus. Detailed information on these parameters is 
provided below. 

The input file contains normalized expression values for each gene in each sample. The user must 
ensure that the file adheres to the CSV format, that genes and samples are placed on rows and 
columns, respectively, and that both gene and sample identifiers are provided (Figure 4). Note that 
the current version of DpFrEP supports only Ensembl gene identifiers. To upload the file a registered 
account is required. 

 

 

Figure 4: DpFrEP input file format. 

 

To get the best performance out of the algorithm, drug predictions for solid and liquid tumours are 
run separately. In this regard, it is recommended to pre-process data from solid and liquid tumours 
independently and to save the relative normalized expression profiles in separate files. In respect of 
data pre-processing, all the normalization methods suited for gene comparisons within a sample are 
well tolerated by the algorithm. In the following table are listed the most common one: 

 

Table 1 Common normalization method to account for gene comparisons within a sample 

Normalization 
method 

Description 

CPM Counts scaled by total number of reads 

FPKM Fragments per kilo base per million mapped reads 

RPKM Reads per kilo base per million mapped reads 

TPM Counts per kilo base of transcript per million mapped reads 

https://vre.ipc-project.bsc.es/
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A specific drop-down menu allows the user to select the tumour type corresponding to the expression 
profiles provided in input. This argument will instruct the algorithm on which model to use; if no action 
is taken, the algorithm will import the solid model by default.  

 

 

Figure 5: DpFrEP drop-down menu to select the tumour type. 

 

Each of the solid and liquid models comprises two sets of drug profiles derived from the Broad and 
Sanger data releases. It is possible to selectively choose one of these sets of drug profiles from the 
specific drop-down menu.  

 

 

Figure 6: DpFrEP drop-down menu to select the model for drug prediction. 

 

This argument is essentially introduced to reduce the time for computational analysis. It implies a 
knowledge of the drugs covered by the two Institutes and the expected performance on the paediatric 
cancer(s) of interest. To make the selection process easier, a metadata file containing the drugs 
covered by the two Institutes has been stored at 
https://github.com/inab/vre_dpfrep_executor/blob/master/dpfrep/data. In addition, PPV curves for 
six distinct paediatric tumours, including leukaemia (both acute lymphocytic and acute myeloid), 
Ewing’s sarcoma, hepatocellular carcinoma, medulloblastoma and neuroblastoma, have been 
generated by alternatively employing one or the other model on the expression profiles of the 
corresponding CCLs. For those cancer types where one drug set does not outperform the other, or 
no benchmark has been carried out, it is recommended to select the Ensemble model that comprises 
both the Broad and Sanger models.  

https://github.com/inab/vre_dpfrep_executor/blob/master/dpfrep/data
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Figure 7: PPV curves for six distinct paediatric tumours. In the order acute lymphocytic leukaemia (ALL), 
acute myeloid leukaemia (LAML), Ewing’s sarcoma (EW), hepatocellular carcinoma (LIHC), 

medulloblastoma (MB) and neuroblastoma (NB). 

 

The software generates an XLS file in output. Sheets within the workbook are named using the 

sample identifiers provided in the input file. Each sheet contains the predicted drug ranked lists of 

the corresponding sample id, which includes the drug identifier, the drug name, eventually the drug 

target(s) and the sourced institute.  

 

 

 

 

 

  



D8.1 - Data-driven model for molecular targets and drug repositioning    

iPC D8.1 Public Page 8 

Chapter 4 Summary and Future Plans 

We fully accomplished the objective of D8.1 to develop a software for predicting a list of small 
molecules with potential therapeutic application in childhood cancer. As a first benchmark, we 
evaluated the performance of our method using two publicly available datasets released by the 
Broad and Sanger Institutes (see Chapter 2). We are further validating the approach using specific 
paediatric cancer datasets, namely the TARGET (https://ocg.cancer.gov/programs/target) and the 
PPTC [6] datasets. In addition, a case study aiming to identify and prioritize drugs for 
hepatoblastoma (HB) patients is being conducted in collaboration with IGTP, which provided the 
expression profiles of these patients, and LMU partners. In particular, we applied our method to each 
patient, and we estimated similarities among the resulting drug ranked lists. Results, shown in Figure 
8, highlighted that patients belonging to the same tumour subclass (either C1 or C2) are more similar, 
in terms of predicted drugs, than patients belonging to different subclasses. To identify drug-specific 
clinical pattern for each subtype, drug ranked lists from either C1 or C2 patients were aggregated 
using the Borda method [7]. Top predicted drugs for the C2 subclass (being the one with a more 
advanced tumour stage and the worst overall survival rate), are currently being tested in HB cell 
lines and PDX model. In future, we would like to upgrade the pipeline, developed for bulk datasets, 
to single cell data; this transition will lead to the development of approaches for compound 
combination modelling. 

 

 

Figure 8: Clustering of HB patients. Expression-based (left) vs drug-based (right) clustering. 

 

 

 

 

 

  

https://ocg.cancer.gov/programs/target
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Chapter 5 Abbreviations  

Abbreviation Translation 

AUC Area under the curve 

CCL Cancer cell line 

CSV Comma separated values 

DpFrEP Drug prediction from expression profile 

ES Enrichment score 

GSEA Gene set enrichment analysis 

HB Hepatoblastoma 

IC50 Half maximal inhibitory concentration 

IGTP Institut Germans Trias i Pujol 

iPCCP iPC central platform 

LMU Ludwig Maximilian University of Munich 

PDX Patient derived xenograft 

PPTC Pediatric preclinical testing consortium 

PPV Positive predicted values 

TARGET Tumor alterations relevant for genomics-driven therapy 
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