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Abstract 
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The information in this document is provided "as is", and no guarantee or warranty is given that the information 
is fit for any particular purpose. The users thereof use the information at their sole risk and liability. 
This document has gone through the consortium's internal review process and is still subject to the review of 
the European Commission. Updates to the content may be made at a later stage. 
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Executive Summary 

D8.2 provides a detailed overview on how causal inference can be used to find potential drug targets 
in cancer cell lines and in pediatric cancer patients samples.  

D8.2 discusses how to derive patient specific signaling network from gene expression and genomics 
data 

D8.2 provides guidelines how to associate the signaling network activity with drug sensitivity and 
CRISPR-based gene essentiality 

D8.2 provides a list of biomarkers (active signaling proteins) that are found to positively respond to 
treatments with specific drugs 

D8.2 showcase a web based tool (FUNKI), which provides an easy to use, graphical interface to 
footprint-based omics analysis tools.  
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Chapter 1 Introduction 

The aim of this deliverable is to report on the results of finding molecular targets in individuals using 
network-based methods.  

Cancer is often studied in biological model systems such as immortalised cell lines. These in vitro 
cell line models capture the characteristics of different tumour types, resample tumour heterogeneity 
and have provided a fertile ground for cancer research.  Nowadays, many cancer cell lines are well 
characterised by their gene expression, metabolite abundance and genomic variations 
(van der Meer et al. 2018). Further, the cell lines’ response to drug perturbations (Yang et al. 2012) 
and CRISPR-technology based dropout (Pacini et al. 2021) is also available. 

Further, we have curated multi-omics and drug response profiling data from the INFORM DSP 
(INdividualized Therapy FOr Relapsed Malignancies in Childhood, functional Drug Response 
Profiling) dataset with a freezing date (15.01.2022). This dataset included 74 patient samples that 
passed the screening quality control criteria, where the drug response was quantified using the 
selective drug sensitivity score (ElHarouni et al 2022). 

Traditional statistical associations between the cancer sample features (gene expression, genomic 
variations etc.)  and drug sensitivity or gene knockout (Behan et al. (2019)) can identify potential 
targets on the cancer cells, however, these pure statistical associations are prone to find non-causal 
interactions. Using prior knowledge, the same data can be used to derive mechanistic patterns which 
provide better insights into the state of said biological systems. These patterns require sophisticated 
methods and a framework of gene sets, pathways or even complete signaling networks.  

 

Figure 1: Inference of cell line specific signalling networks and association to drug sensitivity data 

 

 

 

 

 

 

https://docs.google.com/document/d/1h28rYLnqvsMXdfGuba1wtGYeAPIgUtBa/edit#bookmark=id.2bn6wsx
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To this end, a plethora of tools was developed in recent years: For instance, over-representation 
analysis (ORA) accumulates the information about multiple genes in an unordered gene set to make 
statements about general biological processes (Boyle et al. 2004). However, these approaches 
share the limitation that they use gene expression as a proxy for protein activity. Thereby, they 
disregard post-translational modifications, especially phosphorylations that can dramatically change 
the activity of a protein (Schubert et al. 2018).  

Signature-based methods that use network knowledge to predict transcription factors (TF: 
DoRothEA) or pathway activity (PROGENy) that cause the observed gene expression data (Dugourd 
and Saez-Rodriguez 2019) can overcome the above-mentioned limitations. These methods describe 
more accurately the pathways and expression programs that drive the state of a biological system, 
in particular the progression of a tumour or susceptibility to a treatment (Figure 1). In order to further 
elucidate the topology of signalling processes of an expression profile, the causal inference tools 
CARNIVAL (Liu et al. 2019) have been developed. Using the inferred TF activities, a defined 
perturbation and a signed and directed protein interactions network (or simply referenced as prior 
knowledge network PKN), CARNIVAL generates a set of contextualised networks that explain the 
transmission of a perturbation signal to downstream TFs. Finally, the cell line specific, contextualised 
networks are associated with drug perturbations, which can reveal potential drug targets.  
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Chapter 2 Association of personalised signalling 

networks with drug response and CRISPR 

essentiality scores  

We used CARNIVAL (Liu et al 2019) to contextualise the transcriptomic data available from Cancer 
Dependency Map from Sanger and Broad Institutes to create signalling networks. In particular, we 
compare the influence of two different PKNs, a general one that contains all protein-protein 
interactions (PKN) reported in Omnipath database (Turei et al 2016), and a personalized PKN 
specific to the cell, by removing the non-expressed genes and accounting for mutations. 
Furthermore, we supply different types of weights to the network optimization to increase the 
expressiveness of the resulting signalling networks. Finally, said signalling networks are correlated 
to drug response and CRISPR knockout data in order to gain insights in how the inferred activities 
of a given gene is connected to the sensitivity to a drug or knockout. Ultimately, we aim to identify a 
set of genes whose activity determines the response of cancer cells to certain drugs or knockouts. 
Hence, genes that could potentially act as predictive biomarkers for therapeutic interventions. When 
experimentally validated, these insights can help advance precision cancer therapy and treat more 
individual patients based on their individual tumour. 

 

2.1 Methods  

We used publicly available data, namely gene expression, mutation, CNA and metadata from Cell 
Model Passports. In addition, integrated CRISPR essentiality scores were obtained from  Pacini et 
al. (2021) and drug sensitivity data was downloaded from the Genomics of Drug Sensitivity in Cancer 
Website. 

 

2.1.1 Processing of CRISPR data  

CRISPR essentiality scores are obtained from Pacini et al. 2021 and cell lines with missing data 
were removed. CRISPR essentiality scores represent fold changes of proliferation between cells 
without and with a particular gene present. In total, CRISPR scores are available for 17487 genes 
and 897 cell lines. 

We utilise the CRISPR essentiality scores as alternative weights to guide the generation of 
contextualized networks. Due to the nature of the objective function of CARNIVAL (Liu et al. 2019), 
only weights within the interval of [−1; 1] should be used. PROGENy scores fulfil this condition by 
design. To comply with this constraints, the CRISPR scores are scaled to this interval by scaling with 
the most extreme value.  

 

2.1.2 Generation of CARNIVAL input data  

There are certain inputs that CARNIVAL requires to run: 

1. TF activity measurements: From the publicly available gene expression data, z-scores are 
calculated for each gene to represent a DEG between a particular sample and the overall 
mean of all samples. These z-scores are supplied to DoRothEA to infer TF activities for 
each sample in relation to the population mean. 

https://cellmodelpassports.sanger.ac.uk/downloads
https://cellmodelpassports.sanger.ac.uk/downloads
https://www.cancerrxgene.org/downloads/bulk_download
https://www.cancerrxgene.org/downloads/bulk_download
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2. Prior knowledge network (PKN): The underlying protein interaction network is downloaded 
from OmniPath, a meta-database that stores prior knowledge from a variety of external 
sources (Türei, Korcsmáros, and Saez-Rodriguez 2016). Interactions in the prior 
knowledge network were filtered based on gene expression and mutation. 

3. Perturbations/input nodes: These are inferred from the PKN itself. As the network is 
directed, we identified all nodes with an outgoing and no incoming edge and used this 
subset as perturbations. 

4. Weights (optional): The pathway-based weights were generated using PROGENy and the 
same gene expression z-scores as DoRothEA. The CRISPR-based weights were 
generated as described above. 

CARNIVAL uses the proprietary CPLEX solver for the optimization problem. For better 
reproducibility, CPLEX runs in deterministic mode and the sequence of inputs, PKN edges and TF 
activities are randomized using ten different, reproducible seeds and ten CARNIVAL networks are 
generated based on that. 

CARNIVAL uses a weighted network in the optimization for which we examined the following sets of 
configurations: 

1. no weights: The control includes only the mandatory inputs of CARNIVAL and no weights at 
all. 

2. pscores: The first examined configuration includes the 33 progeny-derived weights 
(progeny scores) as in the original CARNIVAL workflow. 

3. CRISPR-progeny: The second examined configuration replaces progeny scores directly by 
CRISPR-derived weights, thus 33 weights for the same nodes are given. 

4. CRISPR-CS-top33: The third examined configuration selects 33 weights with extreme 
values (17 positive and 16 negative) for context-specific (CS) essential genes. 

The last configuration requires additional subsetting of the 17487 available CRISPR scores for which 
the context-specific essential genes defined in Behan et al. (2019) was chosen.  

Apart from the different weights that are supplied in these configurations, also different PKNs are 
evaluated: The general PKN contains 50725 known signed and directed interactions between human 
proteins. Additionally, there are specific PKNs for every cell line which contain only genes that are 
expressed and not mutated in the specific model. Depending on the cell line, the specific PKNs have 
a reduced size between 35177 and 45087 interactions.  

 

2.1.3 Processing of CARNIVAL networks  

CARNIVAL infers up to 100 solution networks that connect the measured TF activities with the given 
perturbations. From them, it creates a weighted summary network which essentially unites the nodes 
and edges from all solutions. The “weighted activities” are then based on the number of fraction of 
solutions that contained a certain node or edge.  

In order to summarize the ten randomized versions of each configuration, the edges and node tables 
are merged and the means of node- and edge-activities calculated. The result is used to correlate 
node activity with drug sensitivity and gene knockouts. 

Analogous to the approach of the GDSC project, which correlated genetic and genomic traits to drug 
sensitivity, we perform ANOVA between two groups of samples to compare their respective mean 
drug IC50 values. The two groups each contain samples where a specific node is either up- or 
downregulated. 
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2.2 Results  

2.2.1 Replacement of PROGENy-based weights with CRISPR-based ones  

The first objective was to implement and assess the usage of CRISPR-based gene essentiality 
scores as alternative to PROGENy-based weights to guide the generation of CARNIVAL signalling 
networks.  

 

Figure 2: The association of supplied weights and resulting node activities 

Across the investigated configurations, the results diverge widely. For the PROGENy-based pathway 
scores, the correlation coefficients of almost 0.6 and the favoured fraction of more than 90% indicate 
that the supplied weights have an impact on the weighted nodes and accordingly on the generation 
of the signalling networks. However, for the CRISPR-based weights, correlation coefficients are 
closer to zero and favoured fractions closer to 0.5 (relates to equal fractions). 

In summary, the PROGENy-based pathway scores have clearly the most impact on the network 
generation and a bare replacement of them with CRISPR-derived weights performs poorly. However, 
an equally sized individual set of extreme CRISPR essentiality scores for every model can have 
some impact on the optimization. This highlights that the optional weights should ideally use a larger 
range within the given interval of [−1; 1] and that the used transformation, while preserving the 
differences between genes and models, might not be optimal to maximize the weight importance. 

 

2.2.2 Association of node activities with drug sensitivity data  

In order to gain more insights in how cell-line-specific signalling networks and activity of certain 
nodes relate to drug sensitivity, the CARNIVAL results are associated with the CancerRxgene 
dataset (Yang et al. 2012). This dataset contains IC50 values for hundreds of drugs administered to 
hundreds of cell lines.  

We associated the average node activities to drug sensitivity. In particular, the node activity and drug 
sensitivity data is joined by the cell line identifiers and the node activities discretized to groups of up-
regulated (average node activity 𝑎𝑎𝑣𝑔 > 10) and down-regulated (𝑎𝑎𝑣𝑔 < −10). Comparisons with 

few samples (𝑁 < 3 per group) are considered unreliable and thus excluded.  
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The results of the computed ANOVAs can be visualized for the different configurations as volcano 
plots (Figure 3). Therein, significant and thus interesting combinations of drugs and nodes appear 
close to the top corners. 

 

 

Figure 3. Associations of nodes and drug response. 

To further assess the validity of the reported associations, the groups of cell lines that are 
characterised by a specific drug-node-combination are further analyzed. In total, 84 associations are 
significant in at least one configuration (type of PKN as explained above), but only 32 associations 
are significant in at least two configurations. 

 

Figure 4: The association of EPAS1 and SCH772984 

For example, we observed positive relationship between EPAS1 activity and sensitivity to 
SCH772984 (Figure 4). Since the cells with upregulated EPAS1 are more sensitive to SCH772984 
treatment than other pancancer cell lines, the gene could also qualify as a predictive marker for 
sensitivity to the treatment. SCH772984 is a specific inhibitor of ERK1/2, thus it blocks MAPK 
signalling and proliferation in cancers resistant to inhibitors of upstream proteins BRAF and MEK 
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(Morris et al. 2013). EPAS1 is a part of the transcription factor HIF-2 and responsible for cellular 
response to low-oxygen environments. This qualifies the protein as a potential therapeutic target in 
cancer (Patel and Simon 2008). Interestingly, EPAS1 is phosphorylated and thus activated by 
ERK1/2 in hypoxic conditions (Gkotinakou et al. 2019). When it acts as a driver of angiogenesis and 
cancer progression, treatment with SCH772984 could have a strong negative effect on cancer cells.  

 

2.2.3 Association of node activities with gene essentiality data  

Similarly to the drug sensitivity data, to investigate how the activity of certain nodes relates to 
changes in gene dependencies, the node activities are associated with genome-wide CRISPR 
knockout screening data (Pacini 2021). Since the dataset contains essentiality scores of more than 
17.000 genes, the gene dependency data is subset to include only the known context-specific genes 
in large intestine tumours (Behan et al. 2019), that were already used to select the CRISPR-based 
weights. The results are again visualized for the separate configurations as volcano plots. 

 

 

Figure 5: Associations of node activity and knockouts 

Although the highest ranking significant associations have similar P-values as the node-drug 
associations, the much larger number of comparisons results in stricter multiple-testing correction 
and less significant associations between nodes activities and gene essentiality scores. In total, 15 
associations are reported as significant in at least one configuration, seven of which are consistent 
across the specific PKN-based configurations.  
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Figure 6: Association of ETV4 node activity and ARPC4 essentiality 

Essentiality of ARPC4 is positively associated with upregulation of ETV4 (Figure 6). The former 
protein is a member of the Arp2/3 actin polymerization complex that is important for cellular motility 
(Welch et al. 1997). In bladder cancer, ARPC4 expression was reported to promote tumour invasion 
and migration (Xu et al. 2019). The transcription factor ETV4 promotes synthesis of matrix 
metalloproteases, secreted enzymes that degrade extracellular matrix (ECM) proteins. Additionally, 
there are reports that ETV4 expression promotes tumour cell invasion and metastasis, but the exact 
mechanisms are still unclear Cai et al. (2020). Both genes are tightly involved in cellular motility, and 
act synergistically in the invasive tumour stage. Our results indicate that the upregulation of ETV4 
corresponds to increased essentiality of ARPC4. Assuming that the activity of ETV4 is part of an 
invasive transcriptional program, logically, the cells need ARPC4 and the actin polymerization 
complex to drive motility and invasion in this stage. 

In total, four of the seven valid gene-knockout-associations can be confirmed with existing literature 
on different levels. For the remaining associations, a direct interaction between node activity and 
essentiality of another gene are less obvious or cannot be shown with the current state of research.  

 

2.3 Discussion  

It was demonstrated before that the genetic configuration of a tumour determines its sensitivity to an 
anticancer treatment (Yang et al. 2012; Iorio et al. 2016; Tang and Gottlieb 2021). The established 
methods, including the GDSC, statistically associate drug sensitivity screening data with 
transcriptional and mutational datasets to find significantly diverging reactions to a drug between 
groups that differ in a specific molecular feature. Many statistically relevant associations have been 
reported to date and are followed up on with experimental validation efforts. However, the behaviour 
of a cell is not only determined by its genetic profile, but also by other factors like its current 
environment, cellular and molecular interactions. As such factors are hard to measure, we infer the 
signalling behaviour of the investigated cells by applying the logic modeling tool CARNIVAL. That 
way, we elucidate some of the associations between the state of cellular signalling and drug 
sensitivity or gene essentiality in different colorectal cancer cell lines.  

The study is centered around CARNIVAL, a computational tool that uses causal reasoning to predict 
signalling networks which explain signal transduction between specific stimuli and the gene 
expression profile of a biological system under the given stimulus. The generated signalling networks 
depict signalling paths and nodes that differ from canonical wiring in the form of up- and 
downregulation, thus characterising the behaviour of the specific system.  

In order to gain insights from the generated CARNIVAL networks, their node activities are statistically 
analysed and associated with drug sensitivity and gene essentiality data. Importantly, we limit our 
analysis to the average activities of nodes and disregard their locations and wiring. For the statistical 
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associations, different approaches were compared and ANOVA was selected, similarly to the  GDSC 
database which associates cell line drug sensitivities with genetic variants like coding mutations and 
CNAs.  

Based on the aforementioned selection criteria, we report two sets of highly significant drug-node 
and gene-node associations. Although over 40 times more combinations of nodes and genes were 
analysed than node-drug pairs, the former yielded only 7 valid associations while the latter produced 
32. This coincides with the respective p-value distributions, which had much more prominent peaks 
for the node-drug pairs and is likely rooted in the stricter multiple-testing correction for knockout-
related associations. Also, the drug screenings were performed individually for each compound while 
knockout screenings covered all coding proteins in one experiment. Together with the larger range 
of values for drug sensitivity, one could expect clearer and more concise results for the first approach.  

Almost all valid associations can be mapped to important cancerous processes. Drug-based 
associations prominently affect the cell cycle and DNA integrity while few targeted drugs are directed 
against specific signalling pathways that are related to proliferation and survival. The reported and 
confirmed associations represent a useful starting point for further experimental research on the 
involved nodes. The strict selection criteria with respect to statistical significance and consistency 
enable a clear prioritization of a defined set of interactions. 



D8.2 – Network models for molecular target identification   

iPC D8.2 Public Page 10 of 18 

Chapter 3 Association of contextualised networks 

with drug sensitivity data in patients’ samples 

3.1 Introduction 

Within the INFORM (INdividualized Therapy FOr Relapsed Malignancies in Childhood) registry study 
over 1200 cases were molecularly profiled using next generation sequencing (WGS, WES, RNAseq) 
and microarray-based technologies (methylome, transcriptome) (Worst et al 2016). The molecular 
diagnostics platform aimed to identify therapeutic targets. Nevertheless, high evidence targets (such 
as BRAFV600E mutations or NTRK fusions) are only detected in 5% of cases and further only 50% 
of the patients were identified with druggable pathways. The remaining cases lacked druggable 
alterations which mainly included brain tumors, sarcomas and neuroblastomas (van Tilburg et al 
2021). Thus, an ex-vivo functional drug response profiling (DSP) platform for paediatric solid tumours 
has been established by the Translational Drug Screening Unit, KiTZ, DKFZ to complement the 
molecular profiles of the INFORM study with functional drug sensitivity data for each patient. The 
INFORM drug profiling platform aims to identify biomarkers and molecular mechanisms associated 
with drug response profiles.  

 

3.2 Results 

We have curated 74 samples from the multi-omics and drug response profiling data from the 
INFORM DSP dataset (ElHarouni et al 2022). The processed features within the omics profiling 
include: Functional somatic Single Nucleotide Variants (SNV)/ Insertion and Deletions (INDEL) 
calling, gene fusions, and quantified gene expression.  

We have used CARNIVAL (CAusal Reasoning for Network identification using Integer VALue 
programming) (Liu et al 2019) to identify associations between functional drug response profiles and 
causal pathways from gene fusion and expression footprints. PROGENy (Schubert et al 2018).  
response signatures for 14 pathways were calculated from gene expression (TPM) values. Known 
signaling pathway correlation could be identified (eg: MEK inhibitors with MAPK signaling pathway), 
however the correlation coefficient for all drug-pathway analysis was not of high strength, where the 
maximum Pearson correlation coefficient found was 0.66 (Figure 7A).  Transcription factors activity 
scores derived from gene expression data was estimated using DoRothEA (Garcia-Alonso et al 
2019). The activity scores were correlated to the sDSSasym quantitative measurement. Different 
clusters of various drug mechanistic actions showed a strong correlation to the functional drug 
response profiles of the samples (Figure 7B).   
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Figure 7: A) Progeny pathway signature – drug response correlation. Pearson correlation coefficient between 
the drug score and the pathway activity. B) Correlation matrix between transcription factors and sDSSasym 

score 

Both pathway and transcription factor signatures can be used to identify a subset of interactions from 
a prior knowledge network that represent potential regulated pathways linking known or potential 
targets of perturbations towards active transcription factors derived from gene expression data using 
the CARNIVAL pipeline. Hence, a sample specific prior knowledge network was constructed using 
a constraint setting based on the patient’s genomic profile (functional SNV and INDEL mutations). 
Since paediatric cancers have a low mutational burden, recurrent fusion genes and their regulatory 
signalling pathway can be explored as actionable biomarkers. Therefore, we have integrated fusion 
genes to the prior knowledge network to be able to explore the associations between active nodes 
of the derived network and drug response data. CARNIVAL inputs for the mentioned settings were 
prepared and used to identify the sub-network topology. CARNIVAL network interactions were 
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statistically tested for association with drug response outputs using both the multivariate analysis of 
variance (MANOVA) and ElasticNet. A summary of the analysis workflow using the CARNIVAL 
pipeline is shown in Figure 8Fehler! Verweisquelle konnte nicht gefunden werden..  

Figure 9 reveals the common associations detected by both statistical methods (MANOVA and 
ElasticNet), where the top weighted association captured is between the BCL2 inhibitor (Venetoclax) 
and the interaction between CTNNB1 and MMP9. The interaction and downstream TF signaling is 
shown in Figure 9B, where further mapping with OmniPath interactions showed a direct link between 
BCL2 and CTNNB1 confirming the finding.   

 

1

Patient 
Specific PKNs

Transcription 
Factors 

Activities

Pathway
Signatures

74n=

n= 72

MANOVA Elastic Net

Common Association

Drug Response

+

Figure 8: Overview of the patient specific CARNIVAL analysis workflow.  

The CARNIVAl pipeline requires an input of a prior knowledge network, transcription factor activity 
scores, and progeny pathway signature scores. Inputs of 74 INFORM samples are used, analyzed 

and optimized using integer linear programing with the cplex solver. 72 samples had predicted 
signaling network topology solution with node activities. The Interactions are furtherly statistically 

tested against drug response data using MANOVA and ElasticNet 
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Figure 9: CARNIVAL topology network top associations with drug response data 

A) Common association results between MANOVA and ElsaticNet ranked by the weight of the association. 
The top association reported is the CTNNB1_MMP9 interaction with the selective DSS (sDSSasym) of 
Venetoclax. B) The topology network of the top associated interaction affecting the SANI2 transcription 
factor. A direct link between the drug target associated (BCL2) and the interaction of CTNNB1_MMP is 

captured by the OmniPath interaction mapping. 
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Chapter 4 FUNKI: Interactive functional footprint-

based analysis of omics data 

4.1 Introduction 

Multiple methods are conceived to infer the activities of specific processes or molecules using the 
abundance of known targets from omic data. We call them footprint-based methods (Dugourd and 
Saez-Rodriguez, 2019), and we have developed such tools for transcription factor (TF) from 
transcripts of target genes (Garcia-Alonso et al., 2019), kinases from phosphorylated sites (Wirbel et 
al., 2018) and pathways from transcripts of downstream responsive genes (Schubert et al., 2018). 
These activities can then be used to contextualize large signalling networks by identifying paths that 
can explain the changes in activities via reverse causal reasoning (Dugourd et al., 2021; Liu et al., 
2019), and be further linked to changes observed at the level of metabolite abundances (Dugourd et 
al., 2021; Liu et al., 2019). 

FUNKI (FUNctional analysis toolKIt) is an user-friendly interface developed in R language, and 
designed using Shiny (Chang et al., 2020), to analyze omics data using footprint methods. This 
application provides an interface for the R implementations (Bioconductor packages) for the 
aforementioned tools. All methods run on bulk data, and we have shown that they can also be applied 
to single-cell transcriptomics (Holland et al., 2020a), not only for humans but also for mouse samples 
(Holland et al., 2020b). 

 

4.2 Features  

The footprint methods implemented in FUNKI allow users to recover functional insight from several 
omics data without notions of programming. This application also enhances the analysis with an 
extended graphic visualization of the results. Thus, the typical FUNKI pipeline comprises three steps: 
(i) import the user’s omic data, (ii) select the analysis tool according to the data and question and (iii) 
visualize the results in tables and graphical representations (Figure 10). Currently, the following tools 
are implemented: 

DoRothEA (Discriminant Regulon Expression Analysis) is a resource that links TFs with their 
downstream targets (Garcia-Alonso et al., 2019). TF activities are computed from gene expression 
where the regulons (the collection of transcriptional targets for each TF) are the underlying gene 
sets. 

PROGENy (Pathway RespOnsive GENes) is a footprint method developed to infer pathway activity 
from gene expression data (Schubert et al., 2018). The scores are calculated using a linear model 
with weights based on consensus gene signatures obtained from publicly available perturbation 
experiments. 

KinAct estimates kinase activities based on abundance changes measures in target 
phosphorylation sites (Wirbel et al., 2018) using the same algorithm as DoRothEA. Instead of TF-
target interactions, KinAct uses collections of kinase–substrate interactions via OmniPath (Türei et 
al., 2016) and phosphoproteomic data instead of transcriptomic data. 

CARNIVAL (CAusal Reasoning for Network identification using Integer VALue programming) 
reconstructs signalling networks from downstream TF activities by finding the upstream regulators 
(Dugourd et al., 2021; Liu et al., 2019). COSMOS is an extension of CARNIVAL that provides a 
multiomic network to connect different types of omic data together, including transcriptomics, 
metabolomics and phosphoproteomics. Both methods identify coherent mechanistic hypotheses 
(subnetworks) that explain how the measured deregulation may be reached. 
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FUNKI is a Shiny application developed using R programming language. It is directly accessible in 
the cloud through https://saezlab.shinyapps.io/funki/. The source code is freely available 
at https://github.com/saezlab/ShinyFUNKI, and it can be run locally in any platform (Windows, 
macOS and Linux) either downloading the repository or running it directly from GitHub 
(see https://saezlab.github.io/ShinyFUNKI/ for details). 

 

4.3 Conclusion 

FUNKI provides an intuitive user-friendly interface to run footprint methods from different omics. 
Together with the analysis implementation, FUNKI also incorporates several graphical 
representations to explore the results from different perspectives. Users with programming skills can 
take advantage of an extended script-based version of FUNKI for transcriptomic data 
(https://github.com/saezlab/transcriptutorial). 

 

Figure 10: Graphical overview of analysis and visualization features provided by FUNKI. FUNKI provides a 
user interface to upload omics data, and then run DoRothEA, PROGENy, KinAct, CARNIVAL and COSMOS 
to estimate the activity of pathways, TFs and kinases. This figure was published in Hernansaiz-Ballesteros et 

al. 2022 

 

https://saezlab.shinyapps.io/funki/
https://github.com/saezlab/ShinyFUNKI
https://saezlab.github.io/ShinyFUNKI/
https://github.com/saezlab/transcriptutorial
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Chapter 5 Summary and Conclusion 

We fully accomplished the objective of D8.2 to develop computational pipelines that predicts 
potential drug targets for cell lines and paediatric cancer patients. First (see Chapter 2), we obtained 
a general prior knowledge network (PKN) of protein-protein interactions from Omnipath. Then, we 
used genomics data (copy number alteration, deletion and insertion) to tailor the general PKN to 
individual cell lines (see Chapter 2) and cancer patient samples (see Chapter 3). We utilized 
CARNIVAL, a logic based causal inference tool, to infer the activity state of the signaling network of 
the cell line and tumour samples using the prior knowledge network and gene expression data. 
Finally, we associated the estimated activity of the signaling nodes with CRISPR-based gene 
essentiality scores and drug sensitivity data.  

The pipeline resulted in potential molecular targets of therapies. In the cell line-based study (Chapter 
2) we found 7 significant gene-essentiality - signaling node activity and 32 drug – signaling node 
activity associations out of which 4 and 7 were found in the literature, respectively. Further, we also 
found significant associations between the drug response of patients’ data (Chapter 3) and their 
signaling nodes’ activity.  

To make the above computational pipeline broadly available, we also developed an interactive tool 
which facilitates footprint-based omics analysis (Chapter 4). It can be used for the estimation of 
transcription factor and pathway activity from expression data via DoRothEA and PROGENy, 
estimation of kinase activity from phosphoproteomics data using KinAct and for the inference of 
signaling and multi-omics network using CARNIVAL and COSMOS. The tool can be used from a 
web-browser and requires little to no computational skills from the users 
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