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Executive Summary 

The deliverable D4.3 presents the results of application of network-based analysis of multi-omics 
data methods to characterize the molecular mechanisms of paediatric cancers. Three distinct 
approaches have been presented, based on joint application of matrix factorization and analysing 
network topology. The analysis reveals some proteins and genes known to participate in the 
tumorigenesis of particular tumour types as well as reveal novel candidates to be investigated for 
the role of cancer driver genes of potential prognostic or diagnostic biomarkers. 

A part of the deliverable is an interested grated user-friendly environment BIODICA which allows 
users without experience of programming to apply matrix factorization and interpret the results using 
several types of network-based analyses.  

As a part of the deliverable, we curated and harmonized a previously unpublished multi-omics 
neuroblastoma dataset (kindly provided by AMC partner, Dr. Jan Koster), including 5 levels of omics 
description and a comprehensive set of clinical features including survival data. This dataset 
represents a still rare type of multiomics descriptions of paediatric tumours. It can serve in the future 
either for investigating the multi-omics mechanisms of neuroblastoma progression or developing 
mutli-omics signatures for better prognosis and diagnosis or benchmarking existing methods. The 
dataset can be accessed by the iPC consortium via NextCloud platform at https://data.ipc-
project.bsc.es/s/PjBPxJFjn5JJQEq (login required). 

The software code used to produce this deliverable is available from the following web-sites: 

1) BIODICA tool : https://sysbio-curie.github.io/biodica-environment/ 
2) Code for performing systematic network-based OFTEN analysis in order to identify 

subnetworks of PPI interactions associated to metagenes extracted with matrix factorization: 
provided as a Python notebook from iPC github: https://github.com/iPC-project-H2020/wp4-
deliverables/tree/main/D4.3 

3) Method for constructing a multi-omics gene-gene association network: provided as a Python 
notebook from iPC github: https://github.com/iPC-project-H2020/wp4-
deliverables/tree/main/D4.3  

The results of the analyses performed are available at https://data.ipc-
project.bsc.es/s/PjBPxJFjn5JJQEq  (login required).  

 

 

 

https://sysbio-curie.github.io/biodica-environment/
https://github.com/iPC-project-H2020/wp4-deliverables/tree/main/D4.3
https://github.com/iPC-project-H2020/wp4-deliverables/tree/main/D4.3
https://github.com/iPC-project-H2020/wp4-deliverables/tree/main/D4.3
https://github.com/iPC-project-H2020/wp4-deliverables/tree/main/D4.3
https://data.ipc-project.bsc.es/s/PjBPxJFjn5JJQEq
https://data.ipc-project.bsc.es/s/PjBPxJFjn5JJQEq
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Chapter 1 Introduction 

Network-based analyses of multi-omics data have shown to be successful in unravelling the 
molecular mechanisms underlying oncogenesis and providing biomarkers for predicting the success 
of cancer treatment outcome [Dimitrakopoulos et al, 2018, Colaprico et al, 2020, as examples]. By 
networks in this kind of analysis one can mean: 

1) the physical protein-protein interactions networks (and then the task is to find an association of a 
pattern in a multi-omcs dataset to the fixed topology of PPI network) or  

2) the representation of the mutli-omics dataset in a gene-gene association (e.g., correlation) graph, 
derived from the data itself (and then the task is to interpret the topology of the graph in terms of 
biological mechanisms).  

There is no established golden standard methodology for network-based analysis of multi-omics 
datasets, especially in the case when the number of samples in the dataset is small and the overlap 
between omics modalities is not complete, which is frequently the case of paediatric multi-omics 
datasets. 

In this deliverable we suggest several methodologies of network-based analysis of multi-omics 
datasets, based on joint application of matrix factorization, namely Independent Component Analysis 
or ICA (a powerful technique for dimensionality reduction of wide omics data) and graph theory-
based methods for analysing networks. We investigate three strategies reported in Chapters 2,3 and 
4 correspondingly: 

1) Crossing the results of application of ICA to multi-omics data (result of deliverable 3.1) with 
high-confidence human PPI network structure, using OFTEN method inside BIODICA 
computational pipeline implemented and published as a part of this deliverable. 

2) Crossing the results of application of ICA with the network modules inferred from the gene-
gene association study by COSIFER (provided as deliverable 4.1 of iPC) 

3) Infer multi-level gene-gene association networks directly from the results of ICA application 
to mutli-omics datasets and analysing the topology of the resulting networks. The suggested 
methodology has not yet been published. 

In Chapter 2 and Chapter 4 we use a concrete example of an unpublished multi-omics 
neuroblastoma dataset kindly provided to iPC consortium by AMC partner (Dr. Jan Koster). This 
dataset and the way it was prepared for application of the network-based analysis is described below 
in section 1.1. In order to apply methods relying on the structure of PPI networks, we had to select 
a source of high-confidence protein-protein interactions. The PPI network used in our analyses is 
described in section 1.2 below. 

 

1.1 Preprocessing and harmonizing a new multi-omics neuroblastoma 
dataset (provided by AMC partner) 

AMC partner shared with CURIE and BSC partner a neuroblastoma dataset, not previously analysed 
in an integrative way, containing multi-omics description of an NB cohort and extensive clinical data 
associated. The dataset contains five layers of omics of the tumours of the same patient cohort 
treated. These layers are: 

1) Copy number profiling obtained by application of CGH technology (97 samples) 
2) Profile of somatic mutations (87 samples) 
3) Transcriptomic profiling using Affymetrix exon array HuEx10 (110 samples) 
4) Transcriptomic profiling using Affymetrix U133Plus microarray platform (122 samples) 
5) Methylation profiling using Illumina 450K platform (59 samples) 
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Clinical data contained information about collected samples organised in 59 fields containing 
numerical and categorical values, with a number of missing values. 

In order to perform the integrative data analysis, all the values from various levels of omics profiling 
were mapped to the gene names, using provided annotation files. All samples were mapped to the 
patient ids from which the sample has originated. 49 patient ids had a complete set of matched omics 
profiles from 5 different levels (see Figure 1). 

The dataset was composed of 5 data matrices of the same dimension, containing genes as rows 
and samples as columns. Thus, each data matrix contained 49 columns and 15115 rows. The 
complete data matrices of omics profiles (including those samples that did not have all 5 layers of 
matching omics profiles) were also stored at the NextCloud platform.  

 

Figure 1: The matching structure of omics profiles obtained at different layers of AMC 
neuroblastoma multi-omics dataset. 49 patients have omics profiles obtained from 5 different omics 

platforms. 

 

1.2 Preparing a high-quality reference PPI network for the network-
based analysis of ICA metagenes 

Several types of network-based analysis of multi-omics data involve the use of PPI networks 
[Kuperstein et al, 2015]. A PPI network of a particular organism serves as a reference of functional 
relatedness between proteins without splitting the network into pathways or reference gene sets. 
The PPI network structure can be superimposed with the results of computing the statistical 
association between genes or proteins. However, the results and even the applicability of a PPI 
network-based computational method depends on the concrete PPI network being used. Moreover, 
one of the critical parameters of PPI network reconstruction for application of computational methods 
is the network density, i.e. the average number of interactions per protein in the network. The field 
of systems biology suggests several large-scale reconstructions of PPIs, including STRING, BioGrid, 
PathwayCommons databases, in which the quality of curation and the confidence of individual 
interactions can be quite diverse. 
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From our previous experience, we prefer to use PPI reconstructions of intermediate density, 
therefore focusing on the most reliable and confident PPIs resulting either from screening literature 
or well-designed experiments. For this deliverable, we revised three such PPI reconstructions: 

1) Human Protein Reference Database (HPRD), https://www.hprd.org/. This PPI network was 
shown to provide biologically significant results in multiple studies and suits well for our 
purposes. Nice property of this network is a systematic representation of human protein 
complexes composition which can be included into the PPI network using specific edge 
types. However, HPRD has not been updated since 2009. 

2) The Human Reference Interactome (HuRi), http://www.interactome-atlas.org/, provided by 
the Center for Cancer Systems Biology at Dana-Farber Cancer Institute.  

3) HINT (High-quality INTeractomes) is a curated compilation of high-quality protein-protein 
interactions from 8 interactome resources, http://hint.yulab.org/.  

After some initial tests we found out that the more recent HuRi and HINT PPI reconstructions suffer 
from underrepresentation of certain basic biological functions (such as cell cycle), unlike the older 
HPRD. Also, at the intersection of these three databases we found a small number of common 
interactions (15 binary interactions) and only 4169 common proteins. Therefore, for our PPI network-
based analyses we used a union of HPRD+HuRi+HINT interactions, which we called the 
H3combined PPI network. We further eliminated self-interactions and multiple interactions between 
the same pair of proteins which resulted in a network of 16558 proteins connected by 166838 binary 
interactions. The network is provided as a part of BIODICA software distribution from 
https://github.com/LabBandSB/BIODICA. 

 

 

 

 

  

https://www.hprd.org/
http://www.interactome-atlas.org/
http://hint.yulab.org/
https://github.com/LabBandSB/BIODICA
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Chapter 2 Integrated environment BIODICA for multi-
omics data analysis, based on matrix factorization 
and network-based analysis 

2.1 BIODICA environment description 

The recent progress of high throughput omics technologies has made molecular data more 
accessible and has fostered the development of many computational analyses to exploit the rich 
information they offer. Such analyses require efficient tools to handle the high dimensionality of these 
data and reveal the underlying biological processes. 

Independent Component Analysis (ICA) is a statistical and computational method which aims to 
represent observed signals as linear mixtures of independent latent factors. ICA has been 
successfully applied to omics data with the hypothesis that observed molecular profiles result from 
linear combinations of unobserved biological and technical processes (Liebermeister, 2002). In 
particular, it has been shown to extract interpretable and reproducible components and has stood 
out from other popular methods like Principal Component Analysis (PCA) or Non-negative Matrix 
Factorization (NMF) (Sompairac et al., 2019). 

In order to facilitate the use of ICA for non-experienced in programming users we developed 
BIODICA, a complete computational environment for a user-friendly application of ICA to omics data. 
It encompasses a set of tools to extract and interpret reproducible independent components, using 
methods that already proved to be successful in multiple studies (Biton et al., 2014; Aynaud et al., 
2020).  

The computational core of BIODICA is the Python package stabilized-ica. It implements a 
stabilization procedure which addresses the variability of the solutions of ICA algorithms when run 
multiple times (Himberg and Hyvarinen, 2003). When applied to transcriptomics data, not only did 
this procedure provide a quantification of the significance of the independent components but it also 
extracted more reproducible ones than standard ICA (Cantini et al., 2019). Besides, it allowed the 
development of an approach for selecting the optimal number of independent components to extract 
from omics data (Kairov et al., 2017), which is also available in BIODICA. 

BIODICA provides a unique toolbox to help the biological interpretation of the extracted components, 
combining different annotation and visualization methods which already proved their usefulness 
(Teschendorff et al., 2007; Kondratova et al. 2019). Several knowledge-based annotation methods 
are proposed, such as functional enrichment analysis using ToppFun (Chen et al., 2009), Gene Set 
Enrichment Analysis (Subramanian et al., 2005). 

In relation to WP4 and D4.3, BIODICA includes three network-based tools for interpreting the results 
of application of ICA to transcriptomic or other omics datasets: 

1) network-based enrichment analysis using known graphs of protein-protein interactions 
referenced further as OFTEN (Optimally Functionally Enriched Network) 

2) visualisation of computed independent components on top of molecular interaction maps, 
using NaviCell platform developed in (Bonnet et al., 2015) and re-designed as a part of WP4 
(see report on deliverable D4.2) 

3) tool, based on application of Mutual Nearest Neighbours (MNN), to match the components 
extracted from several independent omics data sets. Studying the reproducibility of 
independent components across multiple data sets may help distinguishing biological signals 
that are specific to a particular disease/data type or technical biases that are specific to 
particular conditions (Biton et al., 2014; Cantini et al., 2019). 

BIODICA comes with a user-friendly Graphical User Interface called BIODICA Navigator, providing 
non-experienced users a no-code access to all the BIODICA functionalities. It facilitates 
communication with biology experts, producing sortable and interactive HTML-based reports. The 
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interface has been designed and validated in several studies, including a study of Ewing sarcoma at 
single-cell level (Aynaud et al., 2020), as part of iPC project reported in D3.1. 

BIODICA tool is available from https://sysbio-curie.github.io/biodica-environment/ and the 
manuscript describing the tool was published in Bioinformatics Oxford journal (Captier et al, 2022). 

 

Figure 2: Workflow of BIODICA toolbox. Three network-based analysis  
tools are indicated by arrows. 

 

2.2 Method OFTEN for associating a Protein-protein interaction network 
with a ranked list of genes 

After ICA decomposition, each metagene could be associated to a subnetwork in a global network 
of pairwise interactions such as protein-protein interactions (PPI). BIODICA tool can perform OFTEN 
analysis, a method for selecting a number of genes in a ranked gene list such that this set forms the 
Optimally Functionally Enriched Network (OFTEN), formed by known physical interactions between 
genes or their products. 

Briefly, OFTEN analysis applied to an IC metagene consists in several steps:  

1) For the k top weighted/top ranked genes in the metagene, it maps them on the interaction graph 
and measure the size C(k’) of the largest component of the subnetwork formed by the k’ genes 
among the k top genes found in the interaction graph;  

2) k’ genes are then randomly sampled and the size of the largest component of the subnetwork 
they form is measured R(k’) - this step is repeated NumberOfPerms times;  

https://sysbio-curie.github.io/biodica-environment/
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3) Finally a percolation score is computed S(k) = (1/k’)*(C(k’) - Mean(R(k’))) to assess whether the 
largest component of the subnetwork formed by the top ranked genes of the metagene is highly non-
random or not. 

These 3 steps are repeated for a number of top ranked genes k going from Min to Max with a step 
of size Step. At the end, the largest number k_opt after which the percolation score goes down is 
selected and the largest component of the connected subnetwork is associated with the IC 
metagene. 

OFTEN analysis included in BIODICA is illustrated with a tutorial available from the BIODICA site : 
https://sysbio-curie.github.io/biodica-environment/docs/tutorials/tuto_often/. There also exists a 
possibility to apply OFTEN from command line.  

 

2.3 Application of OFTEN to the results of matrix factorization of 
paediatric multi-omics datasets 

OFTEN algorithm can be used to associate a PPI subnetwork to a metagene or ranked list of genes 
such as metagenes computed with the use of matrix factorization approaches such as ICA. We 
systematically applied OFTEN to the results of application of matrix factorization methods in D3.1. 
In order to achieve this, we developed a simple Python interface to OFTEN using a command line 
way of launching analyses from within BIODICA. Example notebook illustrating this interface is 
provided through iPC github in https://github.com/iPC-project-H2020/wp4-
deliverables/tree/main/D4.3 . 

As an example result of such analysis, we’ve applied OFTEN to the results of ICA application to the 
multiomics neuroblastoma dataset, provided by AMC partner and described in Introduction to this 
deliverable. Application of OFTEN to a particular ICA decomposition results in a table like the one 
shown in Figure 3.  

Subnetworks significantly associated (exceeding a certain threshold in terms of the association score 
and having a small p-value) with at least one of the independent components can be merged together 
and visualised as a single PPI subnetwork associated with the ICA decomposition altogether (see 
Figure 4). Thus for the ICA decomposition of the Affymetrix U133 microarray neuroblastoma dataset, 
this leads to creation of a network with 1027 nodes and 1671 edges. Remarkably, this network has 
a modular organisation, with major modules expectedly associated with cell cycle, immune 
infiltration, extracellular matrix and apolipoproteins. However, some modules emerged from the 
genes contributing to several independent components (like the one denoted as “axon guidance” in 
Figure 4).  

Interestingly, when we applied OFTEN to the results of ICA decomposition of gene expression 
profiling by Affymetrix Human Exon array, we identified a network containing 1267 nodes and 2023 
edges. The intersection of two networks (411 nodes and 334 edges) is shown in Figure 5. The 
intersection is highly significant (p-value~10-200) which indicates the reproducibility of the results of  
ICA+OFTEN analysis with respect to changing the platform of gene expression profiling. This 
analysis of two modalities reveals expected major network modules related to cell cycle, immune 
infiltration, extracellular matrix, but some smaller subnetworks can represent interesting targets to 
be investigated in neuroblastoma. Thus, MEOX2, a homeobox-containing transcription factor that 
plays an essential role in developing tissues, has recently been shown to play a role in the 
cancerogenesis of gliomas [Tachon et al, 2021]. Some of the proteins highlighted by this analysis 
were already suggested as potential biomarkers such as C3 protein [Kim et al, 2014].  

https://sysbio-curie.github.io/biodica-environment/docs/tutorials/tuto_often/
https://github.com/iPC-project-H2020/wp4-deliverables/tree/main/D4.3
https://github.com/iPC-project-H2020/wp4-deliverables/tree/main/D4.3
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Figure 3: Result of OFTEN application to the analysis of gene expression independent 
components. 

 

The table shows the components analysed (IC1-IC20), the PPI network association score (SCORE 
column), the p-value of this score (PVAL column), number of top-contributing genes taken to extract 
the subnetwork (NGENES column), number of protein from the top-contributing genes actually found 
in the PPI network (N column), and the tail of the component where the strongest association with 
the PPI network is found (TYPE column, PLUS for positive tail, MINUS for negative tail, ABS for the 
ranking of absolute values of component weights). OFTEN automatically generates a Cytoscape.js 
interactive representation of the subnetwork associated with each component which can be browsed 
online (shown on the right for IC1, as an example).  
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Figure 4: Results of application of OFTEN method to all 20 ICA components of Affymetrix U133 
microarray-based expression profiling of neuroblastoma.  

 

All PPI subnetworks significantly associated with independent components are shown 
simultaneously. The colour of the node indicates the independent component in which the gene has 
the largest contribution (see the legend). The size of the node reflects its connectivity in the network 
shown here.  

 

 

Figure 5: Intersecting the results of application of OFTEN algorithm to two expression datasets 
decomposed into independent components, one obtained with Affymetrix U133 platform and 

another one with Affymetrix human exon arrays.  

 

The colors and node sizes are the same as in Figure 4.   
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Chapter 3 Crossing the results of matrix factorization 
and network-based analysis of multi-omics data 

There are multiple ways to decipher molecular mechanisms active in cancer. Actually, two of the 
deliverables completed so far are quite similar, having the aim to identify molecular entities from 
solid paediatric omics data. Indeed, in D4.1, networks of molecular entities were derived from multi-
omics datasets of several cancer types. In D3.1, communities of molecular mechanisms were 
extracted from gene expression of the solid tumour types. The molecular similarity networks 
deciphered in D4.1 are, in some way, comparable with the communities obtained in D3.1.  

In this chapter, we investigated if some communities obtained in D3.1 are related to some modules 
defined in D4.1. The chapter is organised as follows: we first summarised the work and findings in 
D3.1 and D4.1. Then, we explained the strategy we used for comparing the findings and selecting 
the most insightful outputs. Finally, we described and discussed the most strongly related 
communities and networks. 

 

3.1 Summary of D4.1 and D3.1 

3.1.1 Results obtained in D4.1 

In D4.1: “Building of cancer type-specific multi-layered molecular and patient similarity networks”, 
the aim was to provide multi-layered molecular and patient networks. A pipeline was designed to 
Build Molecular Networks and Patient-Patient Similarity Networks (BMNPPSN). Figure 6, borrowed 
from deliverable D4.1, illustrates this pipeline. The first step consists in running the COSIFER 
package, which is designed for: 1. creating the collection of molecular and patient similarity networks, 
based on the application of multiple computational methods and 2. integrating these networks 
together. The second step consists in community detection from these networks and the annotation 
of the extracted communities using enrichment analysis. Other analyses were developed in D4.1 but 
are not related to our work in D4.3.  

 

An initial corpus of paediatric cancer-specific networks was created, computed from 4 cancer 
datasets relevant for iPC, encompassing several paediatric cancer types: MB, NB and ES. Table 1 
lists these datasets. Three of them are multi-omics datasets.  

 

In D4.3, we started from the molecular networks constructed from this corpus. 9 networks were used 
in this analysis and processed as described in the text below.  

https://ipc-project.eu/wp-content/uploads/2022/05/iPC-D4.1-Similarity-networks-PU-M24.pdf
https://ipc-project.eu/wp-content/uploads/2022/05/iPC-D3.1-matrix-factorization-PU-M29.pdf
https://ipc-project.eu/wp-content/uploads/2022/05/iPC-D4.1-Similarity-networks-PU-M24.pdf
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Figure 6: Schema of the WP4 pipeline for constructing paediatric cancer-specific networks from 
multi-omics data. 

 

dataset name cancer type layer Nb of subnetworks 

Cavalli_GE MB GE 74 

Cavalli_methylation MB methylation 117 

Forget_GE MB GE 38 

Forget_methylation MB methylation 222 

Forget_proteomics MB proteomics 123 

Forget_phospho_proteomics MB phospho_proteomics 112 

Henrich_GE NB GE 121 

Henrich_methylation NB methylation 223 

Postel-Vinay ES GE 32 

Table 1: 9 molecular networks used as input to define the subnetworks: 2 multi-layers MB 
networks, 1 multi-layers NB network, 1 single-layer ES network 

 

We used the results obtained from the molecular networks only, to be comparable with the work 
done in D3.1. COSIFER includes 10 methodologies for network inference and 3 different consensus 
strategies to integrate the predictions of individual methods. Again, for the sake of comparison, we 
used only one method (Spearman correlation) for computing statistical associations between 
molecular profiles. We used the R package BMNPPSN developed in D4.1 on each data type network 
from which we detected communities using Markov clustering, allowing the detection of modules. 
The only variation from what was done in D4.1 is the number of edges used from the input network. 
Here we kept the 104 highest weights, instead of 105 as in D4.1. 
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3.1.2 Results obtained in D3.1 

In D3.1: “Identification of important regulatory elements using multi-level matrix factorization 
approaches”, we performed unsupervised deconvolution using matrix factorization (stabilized ICA - 
sICA) of gene expression data from each of the 4 solid tumour types of interest in iPC, as described 
in Figure 7, borrowed from D3.1. We then performed a meta-analysis of the weighted metagenes 
defined in the 4 analyses. 142 communities were derived. Off note, when using sICA, each extracted 
component is a vector of gene weights, where the highest and smallest weights show the most 
contributing genes. Thus, there is a positive tail and a negative tail. 

 

Figure 7: Overview of unsupervised deconvolution using matrix factorization (adapted from Cantini 
L. et al, 2019) 

 

We retrieved general pathways as cell cycle and extracellular matrix. We identified several pathways 
linked to immunity: innate immune response, adaptive immune response (“neutrophil activation”; 
“lymphocyte activation”; “T cell activation”). We also observed angiogenesis. In addition, we 
identified dysregulation of several pathways known to be implicated in several of the four tumour 
types. For example, Wnt signalling is known to be deficient in the four tumour types. It was retrieved 
in several communities. Another example is the PI3K-Akt pathway, which also appeared as 
significantly enriched in several communities. 

 

We used the results of the meta-analysis performed on gene expression of the solid tumour datasets, 
in particular the meta-weighted metagenes generated in D3.1.  

 

3.2 Identification of regulatory elements reproducible across 
independent methods 

3.2.1 Comparison of regulatory elements obtained using multi-level matrix 
factorization and multi-layered molecular similarity networks 

To identify reliable regulatory elements, i.e. molecular entities that are identified using various 
approaches, we built gene sets from the subnetworks of each omics layer from D4.1. We then 
performed enrichments into these gene sets for the 142 communities, in the two tails of each 
community. For each tail, 1062 gene sets were tested. We required at least 5 genes to be part of the 
enrichment, which led to the exclusion of numerous modules since a lot of them contain a small 
number of genes.  

https://ipc-project.eu/wp-content/uploads/2022/05/iPC-D3.1-matrix-factorization-PU-M29.pdf
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There are a total of 113 significant enrichments in positive tails and 106 significant enrichments in 
negative tails, using a threshold of 0.01 for the adjusted p-value. More precisely: 

● 100 (22 unique) / 93 (17 unique) significant enrichments “GE” in positive / negative tails. 
● 9 (4 unique) / 7 (3 unique) significant enrichments “Methylation” in positive / negative tails. 
● 4 (2 unique) / 6 (1 unique) significant enrichments “Proteomics” in positive / negative tails. 
● 0 / 0 significant enrichments “Phosphoproteomics” in positive / negative tails. 

 

The majority of the enrichments are in the modules coming from GE networks, as expected since 
the communities were detected from gene expression data in D3.1. Nevertheless, there are also 
significant enrichments in subnetworks from methylation and proteomics layers. Few communities 
show enrichments in several layers (see Table 2). A total of 82 communities are enriched (adjusted 
p-value: 10-2) in the molecular modules defined in D4.1. 

 

3.2.2 Filter stringency of the significantly enriched communities 

We first used a more stringent cutoff for the adjusted p-value (10-5) to keep a community, leading to 
56 communities. We then excluded communities related to ribosome (RPL* and RPS* genes) and 
HLA complexes (HLA* genes), since these genes are often present in gene expression analysis as 
artefacts. Off note, other families of genes were highlighted and might be artefactual, like C1Q 
complex, SNORD116 gene cluster, … 

The 28 remaining communities are listed in Table 2 15 out of 28 communities are a mixture of bulk 
and single cell data, showing reproducibility across data types. For each community, the total number 
of components, the number of components coming from bulk and single-cell datasets used in D3.1 
is indicated. The next columns indicate the side of the tail being enriched, the tumour types of the 
components included (in D3.1) as well as the datasets (in D4.1) in which the community is 
significantly enriched. More details are provided in the table community_stats.xls in NextCloud (at 
https://data.ipc-project.bsc.es/s/zbtQpnWLygneRJ4). One of these community is described in detail 
in the next section. 

 

 Nb 
com
p 

Nb 
bulk 

Nb 
sc 

Sig tail Tumour type D3.1 Enriched modules D4.1 

C39 21 9 11 neg ES,HB,MB,NB Henrich_GE_31,Henrich_GE_6 

C40 21 9 11 neg ES,HB,MB,NB Henrich_GE_31,Henrich_GE_6 

C42 17 4 13 pos ES,MB,NB Cavalli_GE_45 

C43 17 5 12 pos ES,NB Cavalli_GE_5 

C44 17 2 15 neg ES,HB,MB,NB Cavalli_GE_1 

C45 17 2 15 neg ES,HB,MB,NB Cavalli_GE_1 

C57 12 2 10 neg ES,HB,MB,NB Cavalli_GE_1,Forget_GE_3,Postel-
Vinay_GE_5 

C60 11 4 7 neg ES,MB,NB Henrich_methylation_10 

C64 9 2 7 pos ES,HB,NB Henrich_methylation_10 

C65 9 2 7 pos ES,HB,NB Henrich_methylation_10 

https://data.ipc-project.bsc.es/s/zbtQpnWLygneRJ4
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 Nb 
com
p 

Nb 
bulk 

Nb 
sc 

Sig tail Tumour type D3.1 Enriched modules D4.1 

C69 8 5 3 pos ES,HB,MB,NB Postel-Vinay_GE_19,Cavalli_GE_5 

C70 8 3 5 neg ES,NB Cavalli_GE_45 

C72 7 0 7 pos NB Cavalli_GE_1,Forget_GE_3 

C75 6 3 3 pos ES,MB,NB Henrich_GE_7 

C76 6 0 6 pos MB,NB Cavalli_GE_1,Forget_GE_3 

C83 6 0 6 neg MB,NB Cavalli_GE_1,Forget_GE_3 

C84 6 0 6 pos NB Forget_GE_1 

C89 5 1 4 neg ES,HB,MB,NB Cavalli_GE_1,Forget_proteomics_59,Forget
_GE_3 

C97 4 0 4 pos ES,MB Cavalli_GE_11 

C98 4 0 4 neg MB Cavalli_GE_2,Forget_GE_1 

C10
3 

4 0 4 neg NB Henrich_methylation_3 

C10
7 

4 0 4 neg ES,NB Forget_GE_1 

C11
9 

3 3 0 neg ES,MB Henrich_methylation_16 

C12
0 

3 0 3 pos MB Forget_GE_3,Cavalli_GE_1,Forget_proteo
mics_59 

C12
2 

3 0 3 pos MB,NB Postel-Vinay_GE_15 

C12
9 

3 2 1 pos ES,MB Cavalli_GE_5,Postel-Vinay_GE_15,Postel-
Vinay_GE_5,Postel-Vinay_GE_19 

C13
1 

3 3 0 pos MB Cavalli_GE_25 

C14
1 

2 2 0 pos HB Henrich_methylation_10 

Table 2: Description of the 28 communities with significant associations with molecular networks 
established in D4.1 

 

3.3 Annotations of the highlighted communities 

We characterised these communities first by looking at the top-contributing genes obtained by 
application of matrix factorization (table table_top_contributing_genes.txt in NextCloud) and then by 
looking at the annotations performed in D4.1 and D3.1. The annotations obtained by the 2 
approaches are given in the table community_complete_description.xls (in NextCloud). It highlights 
similar pathways retrieved in different communities and describes in detail the annotations obtained 
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for a community and its associated modules. Table 3summarises the main pathways and an example 
is provided in Figure 8. 

Immune response C43, C69, C122, C129 

Replication C72, C76, C83, C89, C120 

Protein folding/RNA processing C42, C64, C65, C70 

Translation / RNA splicing C98, C107 

Table 3: Summary of the most frequently retrieved molecular entities among the 28 communities 

 

As an example, we selected C122, a community linked to immunity. Its top-contributive genes in the 
positive tail are highly significantly enriched in GO terms (10-22) and the whole community has a quite 

high Nominal Enrichment Score (2.7) as reported in the html file in NextCloud. Figure 8 shows its 
annotations using GO. C122 includes components from MB and NB datasets and is associated with a 
module derived from ES. 

 

Comments on the highlighted communities: 

Combining results from D4.1 and D3.1 led to the identification of 28 communities with adjusted p-
value less than 10-5. The description of the communities, the analysis described here and the 
different results can be browsed in the html report provided in NextCloud 
“Report_molecular_entities_identified_by_MF_D3.1_network_D4.1.html”. 

More than half of these 28 communities show enrichments in molecular networks, which are 
coherent between the annotations of the 2 methods, showing consistencies between these two 
approaches. The communities span mainly 4 molecular entities, illustrated in Table 3, but other 
molecular entities are present in single communities, e.g. intermediate filament in C119.  

While this approach is an interesting way to highlight reproducible (through different datasets, tumour 
types or methods) pathways, we also identified limitations: for example, we do not retrieve expected 
processes such as Wnt signalling or PI3K-AKT acting in these four cancer types. While being 
identified by each method independently, the comparison in the way we ran it led to the exclusion of 
these pathways, often because the number of genes in the definition of the modules was small and 
there were not enough genes in common when performing the enrichment analyses. 
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Figure 8: Annotations of the community 122 using GO on the top-contributive genes in the positive 
tail. A: the 10 most significant categories. B: connections between the 10 most significant 

categories. C: most contributing genes in each category of the 10 most significant categories. 
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Chapter 4 Computing network modules from joint 
analysis of multi-omics datasets. Case study of AMC 
neuroblastoma dataset 

In this Chapter we present a case study of the novel network-based methodology, combining the 
results of matrix factorization with topological network analysis in order to derive multi-omics 
signatures and use them for performing the survival analysis as well as to find other associations 
with clinical information. This methodology can be applied to any multi-omics dataset containing a 
sufficient number of samples at each level of description (~50 samples minimum, ~100 samples 
desired). At the same time, the methodology does not necessarily require exact matching of samples 
for all omics levels: it only assumes the same population (cohort) structure of patients. In this report 
we present a case study of application of this methodology to the analysis of multi-omics 
neuroblastoma dataset, provided by the AMC partner and described in section 1.1, which satisfies 
these conditions. 

 

4.1 Joint analysis of several omics layers representing a cohort of 
neuroblastoma patients 

In order to establish the network of multi-omics gene-gene associations, we jointly analysed the 
multi-omics dataset, using the following steps:  

1) Each omics layer is independently decomposed into latent factors, using matrix factorization. 

In our case study we used Stabilised Independent Component Analysis as it is implemented 

in BIODICA software (described in Chapter 2). Alternatively, it is possible to use other matrix 

factorization methods such as NMF either for analysing each omics level independently or 

jointly (such as MOFA or tensorial ICA). The resulting latent factors are recapitulated as 

metagenes (weights provided for each gene). 

2) Each gene was characterised by a vector of concatenated weights from each latent factor 

extracted from each omics level. Therefore, each gene was characterised by a profile of 

latent factors from all omics levels. 

3) Pearson correlation network was computed using the concatenated vectors of weights. An 

association link between two genes was established if the Pearson correlation exceeded a 

threshold p.  

4) Each gene was tagged with a set of tags indicating if it appears in a set of top-contributing 

genes in one or several of the omics modalities. The gene appears in a set of top-contributing 

genes if it has a weight exceeding a certain threshold t in a metagene describing a latent 

factor. 

 

In the case of multi-omics neuroblastoma dataset described in section 1.1, four distinct omics 
modalities have been used: EE - Exon Array (Expression), EM - Expression microarray, MT - 
Methylation array, CN - Copy number changes. Each of the modality was deconvoluted into 20 
independent latent factors, denoted further as IC1_EE, IC2_EE, … , IC20_EE, IC1_EM, IC2_EM, 
…, IC20_EM, IC1_MT, IC2_MT, …, IC20_MT, IC1_CN, IC2_CN, … , IC20_CN (80 factors in total). 
Therefore, each gene was characterised by a vector of 80 weights in different factors. An example 
of significant correlation between two genes (NASP, SFPQ) is shown in Figure 9. In this case one 
can see that many latent factors from different modalities (CN, EE, EM, MT) contribute to the 
correlation. Indeed, these two genes are located on the same chromosome 1p arm, which might 
explain their co-amplification, co-expression and co-methylation. The thresholds used were p = 0.65 
and t = 3.0. The NASP gene was tagged as ‘EM’ because it has a weight exceeding 3.0 only in one 
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metagene IC4_EM (cell cycle-related) and is shown in red color in Figure 10. SPFQ gene does not 
receive any tag because it has a contribution less than 3.0 in all metagenes and is shown in grey in 
Figure 10. 

 

Figure 9: Example of statistical association between two genes across several omics modalities. 
Each point represents a contribution of a gene to an independent component (IC) computed for a 

specific omics modality (EE,EM,MT,CN). EE - Exon Array (Expression), EM - Expression 
microarray, MT - Methylation array, CN - Copy number changes. 

 

The resulting network of multi-omics gene associations manifested an interesting topological 
organisation as a star-like pattern with a central network module strongly enriched in cell cycle genes 
(Bonferroni-corrected p-value=10-28 with GO:1901990, ‘regulation of mitotic cell cycle phase 
transition’) surrounded by modules of different nature, with prevalence of the modules resulting from 
connections between genes sharing similar copy number variation (CNV) patterns (containing genes 
shown in green in Figure 10). The clusters of genes (modules) having green colour result from the 
fact of co-localization of genes in the same or close genomic loci. However, together with CNV-
associated modules of genes, the network contained modules resulting from both gene expression 
and DNA methylation levels, or from gene expression and CNV levels. These modules reflect the 
role of immune cell infiltration, interferon signalling, presence of other blood cells, role of extracellular 
matrix (ECM) and cancer-associated fibroblasts (CAFs).  

 

Such network organisation underlines the neuroblastoma cancer type as being characterised by 
recurrent gene CNVs. Connections of modules associated predominantly to a particular CNV event 
with the central cell cycle module can reflect the evolutionary advantages provided to tumoral cells 
in terms of proliferation by each independent CNV event.  

 

Accordingly to the objectives of the D4.3 we performed two types of topological network analysis in 
order to define and score the molecular mechanisms underlying neuroblastoma progression: 

1) We applied clustering of the network presented in Figure 10 in order to identify the precise 

composition of multi-omics gene modules, and developed a score combining several levels 

of multi-omics description. This score was used for univariate survival regression analysis 

which allowed us to rank the modules with respect to their importance in predicting the 
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patient's treatment outcome. 

2) We performed a topological analysis of the whole network presented at Figure 10 in order to 

define the ‘interface’ genes that connect various gene modules between each other and in 

particular with the central Cell Cycle module. These genes are possible candidates for 

neuroblastoma cancer drivers. 

The results of two types of the analysis are briefly documented in the following two sections. 

 

 

Figure 10: Network-based analysis of the neuroblastoma multiomics dataset provided by AMC 
partner, resulting in the definition of multi-omics modules (gene signatures), that can be scored 

using omics data from several modalities (gene expression, DNA methylation, gene copy number).  

 

4.2 Defining multi-omics modules and use them to associate with 
clinical data 

4.2.1 Decomposing the network into multi-omics modules and scoring them from the 
data 

We performed clustering of the network presented in Figure 10, in order to define multi-omics 
modules, using the following algorithm: 

1) We first decomposed the graph of gene-gene associations into connected components. We 

left only those components which contained at least k=5 genes with tags (coloured genes in 

Figure 10. 

2) Those connected components containing more than 100 genes were further clustered using 

the Markov Chain Clustering algorithm (MCL).  

In application to the graph shown in Figure 10 this resulted in the definition of 93 modules. In order 
to name them, each module was denoted by the name of the gene having the largest connectivity 
inside the module, prefixed with ‘CL_’. Thus, the central cell cycle-related module was named as 
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‘CL_CCNB2’ since the gene CCNB2 had the largest connectivity among all other 135 genes 
composing the module. 

Afterwards, each module was assigned a score in those patients which had the molecular profiles 
corresponding to all gene tags in the module. For example, if a module contained genes tagged ‘EM’ 
and ‘CN’ then all patients having expression microarray and copy number change profiles received 
a score for this module, while other patients received ‘NaN’ score value. 

The score itself was computed as a mean value of molecular measurements normalised to z-scores. 
For each tagged gene in the module those z-scores were taken into the mean computation which 
corresponded to the tags of the gene. For example, if a gene was tagged with ‘EM’, ‘EE’ and ‘MT’ 
then the z-scores from expression microarrays, exon arrays, DNA methylation levels were summed 
up. Importantly, the z-scores from the MT (methylation) level were taken with a negative sign, 
assuming that hypermethylation of a gene region leads to decrease of it’s activity.  

 

4.2.2 Using multi-omics module scores in survival analysis 

The obtained scores were used to compute the univariate survival regression both for overall survival 
(OVS) and progression-free survival (PFS). 22 out of 93 modules have shown significant association 
either to overall or progression free survival with p-value<0.05 and FDR=0.05. Some examples of 
how the multi-omics module scores stratify the patients are shown in Figure 11. This analysis 
highlighted some of the known survival prediction factors such as cell cycle and CNV of the 17p 
genomic locus, but also highlighted other possible predictors such as the hypomethylation of the 
genes EEF2, RPS15, CIRBP, OAZ1, associated with poor prognosis. Of note, these genes are co-
localized at the 19p13.3 genomic locus. EEF2 is a major elongation factor and EEF2K kinase was 
previously reported to be required for neuroblastoma tumours possessing MYCN amplification to 
adapt to the nutrient deprivation conditions [Delaidelli et al, 2017]. RPS15 and CIRBP proteins are 
also involved in the translation control and were reported to be associated with various cancer types. 
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Figure 11: Use of multi-omics modules to stratify patients with respect to their survival. 4 out of 22 
multi-omics significantly associated (p-val<0.05, FDR=0.05) with overall survival modules are 

exemplified by zoom and the corresponding Kaplan-Meier curves (the threshold for the module 
score, separating the patients into 2 groups, was optimized with respect to the significance of the 

logrank test).  

 

The colours of the genes are deciphered in the legend of Figure 10. 

 

4.2.3 Using multi-omics module scores to associate the modules with clinical data 

The obtained multi-omics module scores were analysed for their associations with clinical variables 
provided with the neuroblastoma multi-omics datasets. This analysis was performed using BIODICA 
software, described in Chapter 2. The overview of significant associations (p-val<0.001) is provided 
in Figure 12 and some examples of significant associations are shown in Figure 13. Overall, this 
analysis reveals a subset of 15-17 multi-omics modules significantly associated with variables 
related to patient age, survival data, staging of tumours. Yet another group of modules (including 
CL_AHRR, where one of the module members is TERT gene known to be dysregulated in 
neuroblastoma) is associated with genome-related variables such as mycn_amp, loh1p even though 
this does not translate into an association with patient survival. Some of the modules were 
specifically associated with selected clinical variables such as gender (for example, this was 
expected for the module CL_MORF4L2, containing the genes from the X chromosome). 

.
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Figure 12: The most significant associations of clinical variables with multi-omics module scores. 
The values shown in the heatmap are -log10 p-values of the association scores. Some examples 

of these associations are shown in Figure 13. 
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Figure 13: Examples of significant associations between multi-omics module scores and some 
clinical variables. 

 

4.3 Defining potential cancer drivers as connector genes between the 
cell cycle module and other modules 

We were inspired by the topological organization of the multi-omics network shown in Figure 10, and 
used this structure in order to identify potential cancer drivers in NB. The idea was that a potential 
cancer driver gene must serve as a connector between a cell cycle module and another module. In 
order to quantify this, we computed the in-betweenness score, for each gene in the network. In-
betweenness is supposed to identify the connector genes between network communities as those 
through which many shortest paths in the network pass through. 

An example of such a cancer driver is SPAG5 gene (Figure 14) which connects a module, collecting 
genes with large weights on the locus 17p (metagene CN_IC18 or module CL_ATPAF2), with the 
cell cycle module. SPAG5 gene has simultaneously large weights in expression-based metagenes 
EM_IC4 and EE_IC4 and in the 17p gain-associated metagene CN_IC18 (Figure 14, B). Of note, 
mitotic spindle protein SPAG5 or Sperm-associated Antigen 5 is considered as an emergent 
oncogene in many cancer types [He et al, 2020]. 

Other cancer drivers identified using such topological analysis of the multi-omics gene-gene 
association network can be extracted from Figure 14, A. Interestingly, these drivers are grouped into 
short connected sequences, such as GSG2→SPAG5→TOP2A, POLD1→WDR62→ASF1B, 
PHF8→POLA1→CENPI→KIF4A, NCAPG2→ANLN, WDR34→MELK, EXOSC10→E2F2→CDCA8, 
INTS8→RAD54B→PBK, NUP133→LIN9→NUF2, CASP8AP2→TTK, CEP76→SKA1, 
NUP107→RAD51AP1, RAF1→FANCD2, PPM1D→BRIP1, 
USP11→KDM5C→SMC1A→POLA1→CENPI, VRK1→DLGAP5. The direction here indicates 
approaching the cell cycle module. Many of thus identified cancer drivers were previously reported 
to be involved in the neuroblastoma genesis. 
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Figure 14: Example of identifying potential cancer drivers in NB.  

 

A) Network extracted from the network shown in Figure 11, by taking the genes with the largest in-
betweenness and their nearest neighbours. In-betweenness value is visualised by node and node 
label size. SPAG5 gene is a connector between two modules in the network, cell cycle multi-omics 
module (CL_CCNB2 or EM_IC4) and a module associated with CNV of 17p locus (CL_ATPAF2 or 
CN_IC18). B) Three genes, including SPAG5 simultaneously have large weights in the cell cycle 
metagene EM_IC4 and in the metagene CN_IC18 associated with CNV of 17p locus. C) genomic 
profile of the metagene weights of CN_IC18, showing that it is associated with 17p gain. 
Chromosome 0 here corresponds to the genes with undefined genomic location. 
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Chapter 5 Summary and Conclusion 

This deliverable is devoted to adaptation of several methodologies of network based analysis to 
interpret the results of application of machine learning techniques to multi-omics datasets for 
paediatric cancers. The objective of this analysis is to identify molecular mechanisms of tumour 
progression affecting several levels of omics profiles. Topological analysis of physical PPI networks 
or networks of statistical associations is performed in order to prioritise certain protein functions or 
decompose the networks into functional modules that can serve as multi-omics signatures for 
diagnosis and prognosis. 

The obtained results will serve as a basis for discussion with experts in the biology of particular 
cancer types, as a resource for discovering potential biomarkers and as a collection of multi-omics 
signatures.  

The objectives of the iPC deliverable D4.3 which is a part of Task 4.3 “Identification of molecular 
mechanisms and network biomarkers based on several data types” are fully achieved. 
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Chapter 6 List of Abbreviations  

Abbreviation Translation 

OFTEN Optimally Functionally Enriched Network 

BIODICA Biological Data Analysis using ICA 

ICA Independent Component Analysis 

PPI Protein-protein interaction 

CNV Copy Number Variations 

OVS Overall survival 

PFS Progression-free survival 

MCL Markov Chain Clustering algorithm 
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