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Executive Summary 

In this deliverable, we introduce the concept of multilayer community trajectories and its applications 
in paediatric cancers for the identification of a functional consensus among them. In Chapter 1, an 
introduction to the challenges and opportunities of the functional characterization of paediatric 
cancers and the need of identifying commonalities (consensus) among different paediatric cancers 
are discussed. In Chapter 2, community detection in multilayer networks and the CmmD (Continual 
Multiplex network Module Detector) method, which computes multilayer community trajectories in a 
given multilayer network, are presented. The section reports on the application of multilayer 
community trajectories for functional characterization in two scenarios. In the first scenario, multilayer 
community trajectories are used in an optimization process to find the minimal number of genes that 
recapitulate known subgroups of medulloblastoma, a paediatric cancer (see Section 2.4). This work, 
authored by BSC and CURIE, has been recently published in iScience (Cell Press) [1]. In the second 
scenario, we identified modules of genes participating in the same multilayer community trajectories 
that distinguish between severe and non-severe phenotypes of congenital myasthenic syndromes, 
a rare disease (see Section 2.5). This work will be soon submitted to a high-impact journal for peer-
reviewing. In Chapter 3, we calculate multilayer community trajectories of high-quality gene 
signatures of a number of paediatric cancers, and identify a functional consensus among them. In 
Chapter 4, we conclude the deliverable and outline future work in this area. All the files used in the 
analyses presented here are available at the iPC Nextcloud repository: https://data.ipc-
project.bsc.es/s/GXWppiddJAZ6HHm. The code to reproduce the results in Chapter 3 is available 
at an iPC GitHub repository: https://github.com/iPC-project-H2020/D4.4 

https://paperpile.com/c/sL4dsF/DDI1
https://data.ipc-project.bsc.es/s/GXWppiddJAZ6HHm
https://data.ipc-project.bsc.es/s/GXWppiddJAZ6HHm
https://github.com/iPC-project-H2020/D4.4
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Chapter 1 Introduction 

Over the last decades, major advances have been made in understanding the pathogenesis and 
treatment of paediatric cancers as well as improving survival rates. In particular, the next generation 
of highly parallel sequencing platforms have enabled the thorough analysis of genetic and epigenetic 
abnormalities in tumour cells leading to the discovery of several genes involved in childhood cancers 
[2]. Despite such remarkable improvements, paediatric oncologists are facing significant challenges 
spanning several aspects that require further investigation and efforts, in particular the identification 
of specific molecular subtypes of disease aimed to implement targeted therapies that could 
substantially help enhance cure rates and reduce long-term sequelae improving the overall quality 
of life of patients. The main difficulties in the discovery of molecular subtypes in childhood oncology 
reside in countless factors, including the marked heterogeneity within paediatric cancer types, the 
relationship between survival rates and disease stage and age at clinical presentation, the intractable 
drug resistance in individuals with specific genetic alterations, the little number of clinical trials and 
the challenges related to their effective design, among many others. 

The project iPC is focusing on five paediatric cancers, namely medulloblastoma, Ewing's sarcoma, 
neuroblastoma, hepatoblastoma, and acute lymphoid leukaemia. Molecular subtypes of disease are 
not known for all these paediatric cancers (Table 1). In the cases of neuroblastoma, 
medulloblastoma, and hepatoblastoma, molecular signatures supported by multi-omics evidence 
have been revealed, composed of a varied number of genes (from tens of candidate genes to 
thousands). Surface proteins of B-cells and T-cells are used to classify different types of acute 
lymphoid leukaemia. Finally, sets of genes with multiple genomic alterations have been identified in 
Ewing’s sarcoma. All these collections of putatively critical genes for childhood cancer makes the 
development of novel and more insightful tools for gene functional analysis an open challenge and 
an opportunity in this area. In particular, graph-based approaches demonstrated a great potential in 
identifying functional characteristics of paediatric rare diseases [1] and hold the promise to effectively 
incorporate the molecular characterization of paediatric cancers into clinical classifications and 
actionable interventions. 

In this deliverable, we leverage a novel approach for functional characterization of candidate genes 
in paediatric cancer that BSC and CURIE published in iScience (Cell Press) in 2021 [1]. We report 
on the application of this methodology based on multilayer networks to analyse individual paediatric 
cancers (medulloblastoma) and rare diseases (congenital myasthenic syndromes) as well as 
multiple of them (neuroblastoma, medulloblastoma, Ewing’s sarcoma). The objective of the 
deliverable is to uncover a functional consensus among distinct paediatric cancers that were 
selected based on the availability of sufficiently populated candidate gene sets. 

 

Paediatric 
cancer 

Molecular subtypes Reference 

Acute lymphoid 
leukaemia (ALL) 

ALL subtypes can be classified by the unique set of proteins, 
known as “immunophenotypes”, found on the surface of 
leukaemia cells: 
 

● B-cell ALL 
○ with recurrent genetic abnormalities 
○ not otherwise specified 
○ provisional entities* 

● T-cell ALL 
○ provisional entities* 

[3] 

https://paperpile.com/c/sL4dsF/uFSD
https://paperpile.com/c/sL4dsF/DDI1
https://paperpile.com/c/sL4dsF/DDI1
https://paperpile.com/c/sL4dsF/4BC1
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● Mixed phenotype acute leukemias (MPAL) 

Hepatoblastoma 
(HB) 

HB subtypes can be classified by a transcriptomic and 
epigenomic 16-gene signature (C1, C2) or the increased 
expression of epithelial-mesenchymal transition markers 
(C2B). 

[4–6] 

Neuroblastoma 
(NB) 

NB subtypes can be classified using a 1476-gene signature 
supported by multi-omic evidence (chromatin conformation, 
epigenetics, transcriptomics): 
 

● MYCN (MYCN amplified) 
● MNA-LR(MYCN non-amplified low risk) 
● MNA-HR (MYCN non-amplified high risk) 
● MES (mesenchymal) 

[7] 

Ewing’s 
sarcoma (ES) 

No molecular subtypes of ES are known. However, STAG2 
and CDKN2A genetic alterations have been observed to be 
mutually exclusive, the first being associated with highly 
aggressive tumours. 

[8] 

Medulloblastom
a (MB) 

MB subtypes can be classified using a 3868-gene signature 
supported by multi-omic evidence (proteomics, 
phosphoproteomics, epigenetics, transcriptomics): 
 

● WNT 
● SHH 
● G3 
● G4 

[9] 

Table 1: Molecular subtypes described for the paediatric cancers under study in the iPC project.  

* A provisional entity is a disease subtype for which there is not enough supporting evidence. 

https://paperpile.com/c/sL4dsF/fAqP+YKLV+K42E
https://paperpile.com/c/sL4dsF/yopF
https://paperpile.com/c/sL4dsF/lX5W
https://paperpile.com/c/sL4dsF/gMxQ


D4.4 - Consensus multi-omics subtypes of paediatric cancers   

iPC D4.4 Public Page 3 of 19 

Chapter 2 Multilayer community trajectories 

2.1 Multilayer networks 

A multilayer network is a network organised into multiple layers representing different types of nodes 
and edges (Figure 1). Formally, a multilayer network is defined as a quadruplet M = (VM, EM, V, L), 

where V denotes the set of nodes in the multilayer network, L denotes the set of layers  , VM ⊆ V × 

L denotes the sets of nodes v ∈ V contained in each layer, and EM ⊆ VM ×VM denotes the sets of 

edges connecting tuples of nodes and layers (v, l), (v', l') ∈ VM [10]. In a multilayer network, an edge 

can be an intralayer edge, i.e. it connects nodes in the same layer (l = l'), or interlayer edge, i.e. it 

connects nodes from different layers (l ≠ l'). If the nodes connected by the interlayer edges are the 

same (i.e., they represent the same entity in different layers), interlayer edges are also called identity 
or coupling edges. 

 

Figure 1: A multilayer network composed of three layers (α, β, γ).  

Nodes are connected within each layer through intralayer edges and among different layers through 
interlayer edges. In the represented multilayer network, interlayer edges only connect the same nodes in 

each layer. 
 

Despite offering the means to achieve a comprehensive view of human diseases by accounting for 
the complexity of accumulated biomedical data, multilayer networks exhibit a range of research 
challenges that still requires substantial investigation. Among them, community detection in 
multilayer networks is an area of investigation particularly promising for biomedicine, facilitating the 
evaluation of relevant associations among genes and the identification of candidate targets for drug 
development and repurposing [11]. 

 

2.2 Community detection in multilayer networks 

Community detection in multilayer networks can be achieved with several methods, the Louvain 
algorithm being among the most efficient. The Louvain algorithm for community detection consists 
of two recursive steps. In the first step, nodes are assigned to communities and then moved to others 
until no increase in modularity is observed. In the second step, the identified communities are 

https://paperpile.com/c/sL4dsF/5PNX
https://paperpile.com/c/sL4dsF/2XJU
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aggregated so that a new graph is created and the entire process starts again and proceeds until 
convergence. A community (c) is defined as groups of densely connected nodes in the different 

layers l ∈ L. The algorithm is parametrized to the resolution parameter γ: the higher the value of γ, 

the smaller the size of the detected multilayer communities. The software MolTi [12,13] implements 
the Louvain algorithm for community detection in multilayer networks and defines the modularity of 
a multilayer network X as 

 

where the first sum runs over all layers of the multilayer network and the second over all edges {i, j} 
of each layer l. X(l)

i,j is the weight of the edge {i, j} in a layer l; S(l)i is the sum of the weights of all 
the edges involving vertex i in that layer; m(l) is the sum of the weights of all the edges of that layer; 
δci,cj is equal to 1 if i and j belong to the same community (ci = cj) and to 0 otherwise; γ is the resolution 
parameter; w(l) is the user-defined weight associated to the layer l. In our calculations, w(l) and X(l)

i,j  
are both equal to 1, so that m(l) represents the total number of edges in l and S(l)

i and S(l)j represent 
the degree of nodes i and j, respectively. 

 

2.3 Multilayer community trajectories and the CmmD tool 

BSC in collaboration with iPC partner CURIE published a research article on the application of 
community detection in multilayer networks to paediatric cancers, specifically medulloblastoma, in 
the journal iScience (Cell Press) in March 2021 [1]. The publication, titled “The multilayer community 
structure of medulloblastoma”, introduces a methodology for the analysis of the community 
structures that coexist in a multilayer network at different values of modularity resolution and exploit 
this structural property for several purposes, specifically dimensionality reduction and functional 
characterization of medulloblastoma subtypes. 

We first constructed a multilayer network with identity interlayer edges composed of five layers of 
gene associations retrieved from reputable knowledge bases (molecular interactions, targeting 
drugs, variant-associated diseases, pathways, common reaction metabolites) [1]. We then collected 
the different community structures found in a range of modularity resolution (γ), identifying an 
endpoint of interest for this range as the value where the average community size, as a function of 
the number of communities, establishes a plateau, i.e. where the first derivative equals zero with 
0.05 margin of error (Figure 2). The endpoint was found at γ=12 (964 multilayer communities). 

 

Figure 2: Identification of the resolution range of interest.  

https://paperpile.com/c/sL4dsF/5Mol+2HkU
https://paperpile.com/c/sL4dsF/DDI1
https://paperpile.com/c/sL4dsF/DDI1
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The modularity resolution parameter (γ) determines the number of communities and their size. The most 
dramatic changes in both size and number of communities occur in an initial range of resolution, which 

enables detection of genes that are strongly associated. We identified the endpoint of this range (γ=12) as 
the value where the average community size, as a function of the number of communities, establishes a 

plateau (i.e. its first derivative equals zero with 0.05 margin of error). 
 

The gene composition of the communities may vary depending on the resolution. Some genes tend 
to share the same communities at all resolutions, while others have different trajectories while 
progressively increasing the resolution. To compare the trajectories of each gene along the 
communities, we computed the pairwise Hamming distance among the vectors of communities 
visited by each gene in the resolution range. We refer to these vectors as multilayer community 
trajectories. The higher the distance, the more times two genes belong to different communities 
within this range (Figure 3). 

The obtained distance matrix can be used for several purposes. In the publication, we apply it in an 
optimization process to find the minimal number of genes that recapitulate known medulloblastoma 
subgroups (see Section 2.4). In other applications, we used such distance matrices to identify 
modules of genes that consistently share the same communities at any resolution (see Section 
2.5) or clusters of trajectories that share similar functions among different paediatric cancers (see 
Chapter 3). The R package CmmD, which automates these operations, is available at 
https://github.com/ikernunezca/CmmD.  

 

 

Figure 3: Identification of multilayer community trajectories. 

For a given set of genes, we identified the multilayer communities to which they belong in a range of 
modularity resolution (A). We then computed the pairwise Hamming distances of the trajectories of 

communities visited by each gene (B). The corresponding distance matrix (C) was represented in the form of 
a dendrogram (D) used for clustering analysis. 

 

2.4 Application to medulloblastoma  

Medulloblastoma (MB) is a malignant and fast-growing primary central nervous system tumour, 
which originates from embryonic cells of the brain or spinal cord with no known causes and a 
preferential manifestation in children (one to nine years old). Despite being rare, medulloblastoma is 

https://github.com/ikernunezca/CmmD
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the most common cancerous brain tumour in children. Four molecular disease subtypes of paediatric 
medulloblastomas with distinct clinicopathological features have been identified: WNT, SHH, Group 
3 (G3), and Group 4 (G4) [14]. WNT is associated with the most favourable prognosis, while SHH 
and G4 with intermediate-level prognosis and G3 with the worst outcome. 

The biomedical goal of the study is to identify the minimal number of genes, among those revealed 
by proteogenomic data, that recapitulate the four biomedically relevant medulloblastoma subtypes 
(WNT, SHH, G3, and G4) (Forget et al. 2018). Identifying a minimal set of genes is crucial for both 
the definition of molecular signatures and the research on disease mechanisms. To achieve this 
goal, we performed a series of hierarchical clustering analyses (Ward’s linkage method) where the 
similarity between two patients (A and B) was measured as the Jaccard index (J) of sets of altered 
genes selected using two parameters, θ and λ: 

 

The parameter θ defines the maximum Hamming distance allowed to include genes in the analysis, 
while the parameter λ defines the maximum number of them that must co-occur in the same 
communities along their trajectories. For dimensionality reduction purposes, small values of θ and λ 
guarantee a selection of genes with similar trajectories and in minimal numbers. Hence, we 
formulated an optimization procedure to systematically evaluate values of θ and λ to identify the 
ones that maximise the accuracy of the corresponding optimal clusters, found using the partitioning 
around medoids (PAM) algorithm, that recapitulate patient stratification into the four 
medulloblastoma subtypes (WNT, SHH, G3, G4). 

We achieved the highest accuracy (94.94%) and MCC (87%) with 5 clusters (WNT, SHH, G4, G3, 
and G3-G4) (Figure 4), by selecting for each patient those genes that are represented in the 
communities in sets of, at most, 6 (λ = 6), and that are always part of the same communities along 
their trajectories (θ = 0). Strikingly, such high accuracy corresponds to a strict selection of genes, 
indicating that only a small portion of the genes altered in a patient is sufficient to accomplish an 
accurate patient segregation. This observation implies that the selected genes are tightly associated 
and never leave the communities they belong to along their trajectories. 

Additional analyses, including robustness and sensitivity analyses, and layer-specific enrichments 
of the minimal set of genes identified are reported in the publication [1]. 

 

 

https://paperpile.com/c/sL4dsF/3Nsn
https://paperpile.com/c/sL4dsF/DDI1
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Figure 4: Ward’s linkage hierarchical clustering obtained at λ = 6 and θ = 0.  

The rectangles indicate the 5 clusters suggested by PAM (partitioning around medoids) criteria. The colour 
of each cluster indicates the original patient stratification into the four medulloblastoma subtypes via network 
fusion (Forget et al. 2018): WNT group (blue), SHH group (red), Group 4 (G4, green), Group 3 (G3, yellow). 

A fifth cluster is depicted in purple, including 3 patients originally assigned to groups G3 (MB47) and G4 
(MB09 and MB54). 

 

2.5 Other applications (congenital ,myasthenic syndromes) 

We have recently applied CmmD and the multilayer community trajectory analysis to the study of 
rare diseases other than paediatric cancers. Congenital Myasthenic Syndromes (CMS) are a group 
of diverse rare diseases characterised by neuromuscular junction (NMJ) dysfunctions resulting in 
muscle weakness. While causative genes have been previously described for these conditions, a 
molecular explanation for the observed differences in phenotypic severity remains unclear. In 
collaboration with research institutions in Spain, The Netherlands and Canada, we undertook an in-
depth analysis of a cohort of 20 CMS patients from an isolated population bearing the same 
homozygous mutation of the CHRNE gene, which encodes a subunit of the acetylcholine receptor 
(AChR) (Figure 5). By identifying genes that are found in the same communities in the entire range 
of resolution parameter and segregate between severe and non-severe cases, our results show that 
CMS severity can be ascribed to the personalised impairment of specific classes of NMJ proteins, 
namely extracellular matrix components (proteoglycans, tenascins, chromogranins) and 
postsynaptic modulators of AChR clustering. By coupling multilayer community trajectory analysis 
and omics information, we identified and experimentally validated in D. rerio the modifying effect of 
a gene that was previously unknown to be a NMJ interactor. This work is about to be submitted to a 
high-impact journal for peer-reviewing. 
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Figure 5: Analytical workflow employed to address the severity of a cohort of patients affected by Congenital 
Myasthenic Syndromes (CMS). 

A multi-scale functional analysis approach, based on multilayer networks, was used to identify the relationships 
between an association of functionally related alterations obtained from omics data (Whole Genome 
Sequencing, WGS; RNA-sequencing, RNAseq) with known CMS causal genes. Modules of CMS linked genes 
that emerged from this analysis were characterised at the level of single individuals. 
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Chapter 3 A functional consensus of paediatric 

cancers based on multilayer community trajectories  

3.1 Clusters of multilayer community trajectories  

In this analysis we leverage the multilayer network used in a recent publication [1]. This multilayer 
network is composed of five layers (molecular interactions, targeting drugs, variant-associated 
diseases, pathways, common reaction metabolites). The layers contain a total of 18,948 genes 
(Entrez identifiers) for which we computed pairwise Hamming distances based on their multilayer 
community trajectories in a defined range of modularity resolution (see Section 2.3 in Chapter 2). 
We focused our analysis on cancer types with sufficiently large gene sets that are significantly altered 
or representing molecular signatures supported by multi-omics evidence (medulloblastoma, 
neuroblastoma, Ewing’s sarcoma; see Table 1). Then, we identified clusters of genes based on 
similarity in their multilayer community trajectories comparing a relaxed clustering criterion (similar 
trajectories) and a strict clustering criterion (identical trajectories). Finally, we computed Gene 
Ontology enrichments in each cluster of each paediatric tumour and evaluated the functional 
consensus among them. 

 

3.1.1 Relaxed clustering criterion (similar trajectories) 

While the distance metric is defined (Hamming distance), the optimal linkage method to hierarchically 
cluster the multilayer community trajectories was chosen based on the cophenetic correlation 
coefficient. If the clustering is valid, the linking of objects in the cluster tree should have a strong 
correlation with the distances between objects in the distance vector. The optimal number of clusters 
is the one corresponding to the maximum Calinski-Harabasz score. 

 

3.1.2 Strict clustering criterion (identical trajectories) 

As shown in the case of medulloblastoma and congenital myasthenic syndromes (see Sections 2.4 
and 2.5 in Chapter 2), the identification of genes that exhibit exactly the same trajectories is a strong 
indication of functional relatedness among them. The partition of genes with identical trajectories 
corresponds to those with a Hamming distance of zero. 

 

3.2 Neuroblastoma 

To functionally characterise neuroblastoma, we used the signature of 1476 genes targeted by the 
super enhancers identified and assigned to four disease subtypes (MYCN, MNA-LR, MNA-HR, MES) 
by Gartlgruber and collaborators [7]. After converting gene symbols to Entrez identifiers, 1153 genes 
of this signature were found in the multilayer network. The relaxed clustering criterion (similar 
trajectories) led to an optimal number of 743 clusters of which 139 contained more than one gene 
and were populated by an average of 3.97 genes (Table 2; Figures Figure 6-Figure 7). The strict 
clustering criterion (identical trajectories) identified 124 clusters with more than one gene (3.87 genes 
per cluster on average). 

 

 

 

https://paperpile.com/c/sL4dsF/DDI1
https://paperpile.com/c/sL4dsF/yopF
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linkage method cophenetic correlation coefficient 

average 0.886239 

weighted 0.855589 

complete 0.815867 

centroid 0.693149 

median 0.520462 

single 0.436420 

ward 0.341389 

Table 2: Cophenetic correlation coefficient for several linkage methods. 

The optimal hierarchical clustering method for the neuroblastoma gene signature is ‘average’. 

 

 

Figure 6: Optimal number of multilayer community trajectory clusters in neuroblastoma. 

Number of clusters as a function of the Calinski-Harabasz score; the optimal number of clusters is 743 (left 
panel). Counts of the number of genes in clusters populated by more than one gene (average 3.97; right 

panel). 

 

Figure 7: Dendrogram showing the hierarchical clustering of neuroblastoma signature genes based on 
multilayer community trajectories. 
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3.3 Medulloblastoma 

In the case of medulloblastoma, we used the 3838 proteogenomic signature quantified by Forget 
and collaborators [9]. After converting gene symbols to Entrez identifiers and filtering out the genes 
that were not present in the multilayer network, we obtained a list of 3677 genes. After clustering the 
genes by multilayer community trajectories, we identified 5 clusters with more than one gene, with 
an average number of 735.4 genes per cluster (Table 3; Figures Figure 8-Figure 9). The strict 
clustering criterion (identical trajectories) identified 274 clusters with more than one gene (6.89 genes 
per cluster on average). 

 

linkage method cophenetic correlation coefficient 

average 0.925982 

weighted 0.878883 

complete 0.830810 

centroid 0.766416 

median 0.558795 

single 0.475755 

ward 0.316795 

Table 3: Cophenetic correlation coefficient for several linkage methods. 

The optimal hierarchical clustering method for the medulloblastoma gene signature is ‘average’. 

 

 

Figure 8: Optimal number of multilayer community trajectory clusters in medulloblastoma. 

Number of clusters as a function of the Calinski-Harabasz score; the optimal number of clusters is 5 (left 
panel). Counts of the number of genes in clusters populated by more than one gene (average 735.4; right 

panel). 

https://paperpile.com/c/sL4dsF/gMxQ
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Figure 9: Dendrogram showing the optimal hierarchical clustering of medulloblastoma signature genes 
based on multilayer community trajectories. 

 

3.4 Ewing’s sarcoma  

To functionally characterise Ewing’s sarcoma, we used the set of 50 significantly mutated genes 
identified by Tirode and collaborators [8]. After converting gene symbols to Entrez identifiers, 46 
genes of this set were found in the multilayer network. The hierarchical clustering of the multilayer 
community trajectories of these genes detected 39 optimal clusters of which 4 contain more than 
one gene (2.75 genes  per cluster on average) (Table 4; Figures Figure 10-Figure 11). Similarly, 
the strict clustering criterion (identical trajectories) identified 3 clusters with more than one gene (2.33 
genes per cluster on average). 

 

linkage method cophenetic correlation coefficient 

average 0.992301 

weighted 0.991969 

complete 0.988707 

single 0.969303 

centroid 0.928789 

median 0.871606 

ward 0.598645 

Table 4: Cophenetic correlation coefficient for several linkage methods. 

The optimal hierarchical clustering method for the Ewing’s gene signature is ‘average’. 

 

https://paperpile.com/c/sL4dsF/lX5W
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Figure 10: Optimal number of multilayer community trajectory clusters in Ewing’s sarcoma. 

Number of clusters as a function of the Calinski-Harabasz score; the optimal number of clusters is 4 (left 
panel). Counts of the number of genes in clusters populated by more than one gene (average 2.75; right 

panel). 

 

 

Figure 11: Dendrogram showing the optimal hierarchical clustering of Ewing’s sarcoma signature genes 
based on multilayer community trajectories. 

 

3.5 Functional consensus  

By comparing the results of the relaxed and strict clustering criteria (Table 5), it is apparent how the 
strict clustering criterion is able to capture a more diverse landscape of gene groups in 
medulloblastoma then the relaxed criterion, while resulting in similar clusters in neuroblastoma and 
Ewing’s sarcoma. For this reason, we computed Gene Ontology (GO) functional enrichments of the 
genes found in the clusters identified with the strict clustering criterion. In particular, we focused on 
the 12 common clusters that are represented in the three paediatric cancers (Figure 12; Table 6), 
and visually rendered the SimRel semantic similarity of the corresponding 359 enriched GO terms 



D4.4 - Consensus multi-omics subtypes of paediatric cancers   

iPC D4.4 Public Page 14 of 19 

using the Tree Map visualisation tool of Revigo (http://revigo.irb.hr/) [15] (Figures Figure 13-Figure 
15). All GO enrichments has been computed using g:Profiler1 [16]. 

Among the many functional enrichments, the 25 genes belonging to cluster 9 (see Table 6) are 
enriched in functions related to telomere dynamics, microtubules, and binding to PP2CA, a major 
phosphatase for microtubule-associated proteins [17]. Interestingly, three genes (PDCL3, STK24, 
STRIP1) are common between neuroblastoma and medulloblastoma, and one (STRN4) is common 
between medulloblastoma and Ewing’s sarcoma. All the other genes are uniquely found in the three 
paediatric cancers gene signatures although they share exactly the same multilayer community 
trajectory, thus a tight functional relatedness among them. Few other genes from this analysis are 
in common between signatures. TBCD (cluster 3, functionally related to cytoskeleton), HPCAL1 
(cluster 5, functionally related to extracellular exosome), is found in neuroblastoma and 
medulloblastoma, while ANK2 and NUP155 (cluster 1, functionally related to ion channel activities) 
are found in medulloblastoma and Ewing’s sarcoma. In the majority of the case, the common clusters 
are composed of genes from distinct signatures. For instance, the 11 genes belonging to cluster 7 
are enriched in hormonal regulation and response but none of them is found in multiple cancers. 
These genes belong to the same communities but are specific to each paediatric cancer. 

 

 
Paediatric cancer 

Relaxed clustering criterion 
(similar trajectories) 

Strict clustering criterion 
(identical trajectories) 

Number of clusters with 
>1 genes 

Average number of 
genes per cluster 

Number of clusters with 
>1 genes 

Average number of 
genes per cluster 

Neuroblastoma 139 3.97 124 3.87 

Medulloblastoma 5 735.4 274 6.89 

Ewing’s sarcoma 4 2.75 3 2.33 

Table 5: Number of clusters and average number of genes per cluster recovered by two clustering criteria. 

 

Figure 12: Venn diagrams showing the intersection of clusters of multilayer community trajectories identified 
in neuroblastoma, medulloblastoma and Ewing’s sarcoma. 

 

 

1 Main parameters: annotated domain scope, Bonferroni adjusted p-values with 0.05 significant threshold, 

experimental evidence codes, intersection size >3. 

http://revigo.irb.hr/
https://paperpile.com/c/sL4dsF/U6MO
https://paperpile.com/c/sL4dsF/1iWX
https://paperpile.com/c/sL4dsF/FrpD


D4.4 - Consensus multi-omics subtypes of paediatric cancers   

iPC D4.4 Public Page 15 of 19 

cluster ID Neuroblastoma Medulloblastoma Ewing’s sarcoma 

0 
ZNF77;ZNF703;ZNF704;ZFP30;VWCE;

ZNF169;ZNF664;ZNF605;ZNF662 
ZNF24;ZKSCAN1;TRIM28;ZNF316 ZNF721 

1 
MYL4;SCN5A;CACNA1C;DPP6;ANK2;

RYR3;KCNH2;RYR2 
AKAP9;GPD1L;NUP155;GNAI2;ANK2 KCNIP1;NUP155;DPP10 

2 SIGLEC10;CD1D CXADR TREML1 

3 AGBL4;TBCD 

TUBB;TUBB3;EML2;ATAT1;TUBB2A;T
UBB6;TBCC;TUBB4B;TBCA;TUBB2B;
TUBA1C;EML4;ARL2;TUBB4A;TTC5;T

BCD 

AGBL1 

4 
GNAZ;NPY;GPR18;GAL;GRM8;APLNR

;CXCR4 
HEBP1;GPSM1 GRM4 

5 
DAAM2;CD164;HPCAL1;SPRY1;SPRY

2;KRT19;CREB5 
KRT18;HPCAL1;GLRX3;DSG2;CAPN

S1;KRT15;KRT8 
LCE1C;KRT38 

6 
ARHGAP28;SOX11;TCF7L2;PAX4;IRS

2 
PTPN1;HMGA1;APPL1;IRS1;IGF2BP2 PCDHB10 

7 PRLHR;HRH1 GNA11;GNAQ;NLN OXTR 

8 TRIM67;DLC1;CCND1;ODC1 CTNNB1;BAX;PTPN12;SRC TP53 

9 
STRIP1;RASSF3;CDCA4;PDCL3;STK2

4;ASTN2;KLHDC8A 

MOB4;CCT7;STRN;CCT3;STRN3;TTC
27;STRIP1;PDCL3;STK24;CCT5;STR
N4;TCP1;CCT4;CCT6A;PDCD10;CTT

NBP2NL;STK26 

STRN4 

10 SORL1 TGFBI APCS 

11 NR6A1;RORA NR2C2;NR2C2AP;NRBP1 NR0B1 

Table 6: Genes that belong to the common clusters of multilayer community trajectories found in 
neuroblastoma, medulloblastoma, and Ewing’s sarcoma using the strict clustering criterion. 

 

 

Figure 13: Revigo Tree Map visualisation of pairwise SimRel semantic similarities of common enriched GO 
terms (Biological Processes) in the common clusters of multilayer community trajectories of neuroblastoma, 
medulloblastoma and Ewing’s sarcoma. 
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Figure 14: Revigo Tree Map visualisation of pairwise SimRel semantic similarities of common enriched GO 
terms (Molecular Functions) in the common clusters of multilayer community trajectories of neuroblastoma, 
medulloblastoma and Ewing’s sarcoma. 
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Figure 15: Revigo Tree Map visualisation of pairwise SimRel semantic similarities of common enriched GO 
terms (Cellular Components) in the common clusters of multilayer community trajectories of neuroblastoma, 
medulloblastoma and Ewing’s sarcoma. 
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Chapter 4 Summary and Conclusions 

Molecular disease subtyping is a fundamental tool to achieve an effective patient stratification for 
clinical trials, preventive and therapeutic interventions. In some cancers, such as breast cancer and 
blood cancers, subtyping has been very successful thanks to the statistical power brought by cohorts 
composed of large numbers of patients. Rare diseases, such as paediatric cancers, represent a 
more challenging situation since, by definition, they affect a small number of patients and studies 
that in most cases are in the order of tens of subjects. In our view, a meaningful molecular subtyping 
of rare diseases can be achieved by leveraging the wealth of biomedical information that is available 
in public knowledge bases and that can be integrated in the form of a multilayer network. In particular, 
achieving patient stratification by means of structural features (multilayer community trajectories) 
extracted from a general-purpose multilayer network represents a way to both identify the minimal 
set of genes that characterise the subgroups and, most importantly, to obtain information about the 
types of relations that define the associations of such genes (e.g. targeting drugs, pathways, physical 
interactions). 

In this deliverable we leveraged a novel multilayer network community analysis framework that was 
originally applied to a study on medulloblastoma and published in a collaborative effort between iPC 
partners BSC and iPC [1]. We reported on that work and further applications of this methodology to 
other rare diseases (congenital myasthenic syndromes). Moreover, we explored the ability of 
multilayer community trajectories to enable the identification of a functional consensus among 
diverse paediatric cancers, namely medulloblastoma, neuroblastoma, and Ewing’s sarcoma. We 
tested different strategies to determine gene clusters based on multilayer community trajectories and 
computed functional enrichments that revealed specific processes that involve genes belonging to 
the same communities but acting distinctively in the three cancers. 

This report demonstrates the ability of multilayer community trajectory analysis to uncover functional 
communalities among paediatric cancers. The main limitation of this work consists in the availability 
of candidate gene sets to employ in the analysis. We used available gene signatures for three 
paediatric cancers that are sufficiently populated. Nevertheless, the type of study would benefit from 
a set of bona fide gene candidates supported by multi-omics evidence and involved in key cancer 
processes, such as the meta-gene identified by the work developed in the context of D4.3 or the 
paediatric cancer genes mentioned in the literature such as those detected in D3.2. 

 

https://paperpile.com/c/sL4dsF/DDI1
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