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Abstract 

Flow cytometry is an important diagnostic tool in 
childhood acute lymphoblastic leukemias (ALL), flow 
cytometry data analysis is limited by multiple sources of 
bias and variation. We present a unified machine 
learning framework for automated analysis of a 
standardized diagnostic pediatric leukemia staining that 
can overcome these challenges. We applied our 
framework in a large cohort of ALL flow cytometry 
samples and demonstrated how it can robustly extract 
the frequencies of cell lineage populations with minimal 
expert intervention. This work provides a proof of 
concept that our method meets the needs of an 
automated analysis tool for diagnostic flow cytometry 
data. 
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Executive Summary 

Flow cytometry is an important diagnostic tool in childhood acute lymphoblastic leukemias (ALL). 

Despite substantial efforts of staining protocol standardisation over the past decade, analysis of flow 

data from diagnostic work-ups still requires time-consuming manual gating performed by an expert. 

So far, staining irregularities and other technical sources of variation have prohibited the successful 

application of automated flow cytometry data analysis tools. 

This report describes the development of a unified machine learning framework for automated 

analysis of a standardised diagnostic paediatric leukaemia staining. We demonstrate its ability to 

robustly extract the frequencies of cell lineage populations in a large cohort of bone marrow samples 

from B cell precursor-ALL patients analysed in the Children’s Hospital Zurich by standard diagnostic 

flow cytometry procedure using two different staining panels. Our model is unaffected by batch 

effects caused by staining intensity variability, because we avoided data integration and created 

instead a baseline cell lineage classification model that can accurately detect cell populations of 

interest in unseen flow cytometry samples. This work provides a proof of concept that our method 

meets the needs of an automated analysis tool for diagnostic flow cytometry data. It helps to solve 

the analysis bottleneck by providing a fast, robust and accurate identification of cell populations of 

interest with little to no expert curation of results.  

 

We are currently writing a manuscript to publish these results. In parallel, we are addressing the 

internal administrative procedures necessary to release open source code at IBM Research. The 

code and data supporting this study will be made publicly available upon publication of the article.  

 

 

 

 

 

 

 

 

 

 

 

 

 



D7.2 – Software to define tumour subclones and association with therapy response                   

iPC D7.2 Public Page IV 

Table of Contents 

Chapter 1 Introduction ................................................................................................................ 1 

Chapter 2 Materials and Methods ............................................................................................... 2 

2.1 Sample collection, processing, and flow cytometry ........................................................... 2 

2.2 Data analysis in diagnostics unit and flow cytometry expert laboratory ............................. 2 

Chapter 3 Automated immune cell classification for paediatric ALL ............................................ 3 

3.1 Dataset description ........................................................................................................... 4 

3.2 Data preprocessing ........................................................................................................... 4 

3.2.1 Gating of live cells ...................................................................................................... 4 

3.2.2 Compensation, transformation, and normalisation ..................................................... 5 

3.3 Data annotation ................................................................................................................ 5 

3.4 Training of cell lineage classifier ....................................................................................... 6 

3.5 Testing of cell lineage classifier in unseen samples .......................................................... 8 

Chapter 4 Association of cell lineage frequencies with clinical data ............................................ 9 

Chapter 5 Summary and Conclusion ........................................................................................ 12 

Chapter 6 Future work .............................................................................................................. 13 

Chapter 7 List of Abbreviations ................................................................................................ 14 

Chapter 8 Bibliography ............................................................................................................. 15 

 

 



D7.2 – Software to define tumour subclones and association with therapy response                   

iPC D7.2 Public Page V 

List of Figures 

Figure 1: Schematic overview of automated immune cell classification using flow cytometry bone 
marrow measurements. .................................................................................................................. 3 

Figure 2: Automatic live cell gating of 4 individual .fcs files (columns) where the FSC-A channel 
distribution (top row) and the FSC-A, SSC-A scatter plot is shown. Orange vertical lines (top row) 
indicate low FSC-A gate and red rectangles indicate selected gate on both channels. ................... 5 

Figure 3: Annotation process of one training sample. ...................................................................... 6 

Figure 4: Model architecture and training results of cell lineage neural network classifier. .............. 7 

Figure 5: Performance of the classifier for each cell lineage in terms of precision, recall and F1-
Score. ............................................................................................................................................. 7 

Figure 6: Performance of the model in 3 unseen samples. .............................................................. 8 

Figure 7: Clustering of cell lineage frequencies per sample and its associations with various ALL 
metadata. ........................................................................................................................................ 9 

Figure 8: Association of frequency of leukemic blasts and various disease metadata. .................. 10 

Figure 9: Association of percentage of CD34 positive leukemic blasts with disease metadata. ..... 11 

 

List of Tables 

Table 1: Design of Euroflow 8-colour ALOT panel and ZH 12-colour ALOT panel. sCD3: surface 
CD3, cyCD3: cytoplasmatic CD3. #: intracellular staining. .............................................................. 2 

Table 2: Expression of lineage markers on healthy B cells, B cell leukemic blasts, T cells, NK cells 
and Myeloid cells. Pos/neg: positive/negative expression of the marker in the cell lineage of interest.
 ....................................................................................................................................................... 4 

 



D7.2 – Software to define tumour subclones and association with therapy response                   

iPC D7.2 Public Page 1 

Chapter 1 Introduction 

Childhood Acute Lymphoblastic Leukaemia (ALL) is one of the most frequent malignant diseases in 

childhood and one of the major causes of childhood death [1]. Mutations in lymphoid development 

genes and in genes associated with apoptosis and proliferation result in malignant transformation of 

lymphoid precursor cells of B-cell and T-cell phenotype [2], [3]. Flow cytometry is a cornerstone in 

ALL diagnosis and subtyping, with established flow cytometry panels used in routine diagnostics [4], 

[5]. Diagnostic staining panels are designed to interrogate cell populations currently considered 

relevant for diagnosis [4]. Currently, thousands of flow cytometry files from both diagnostic and 

research studies from leukaemia patients are stored in hospital databases. However, despite being 

a rich source of information that exceeds the current diagnostic purposes, their use in research is 

limited. A major impediment is the challenging analysis of flow cytometry data produced in a 

diagnostic unit. Even though the processing, staining procedure and acquisition of samples is 

standardised in diagnostic units, staining variability is introduced by reasons which cannot be 

prevented in daily routine work, such as manual work by technicians, antibody lot-to-lot 

inconsistency, or change of instruments over time. Importantly, in a clinical setting new files are 

constantly generated from newly diagnosed patients and patient samples are processed immediately 

when they are available. This implies that a set of files which are generated on one day represent 

an individual batch. All these factors introduce pronounced systematic biases, observed as batch 

effects in the measurements, which greatly impact the reproducibility and robustness of results, and 

can potentially lead to misleading conclusions [6]. 

As a result, available flow cytometry data analysis methods cannot account for the needs of data 

acquired in diagnostic units during large clinical studies, which often include hundreds of patients 

and millions of high-dimensional single-cell profiles. Currently, identification of cell populations of 

interest in these patients is traditionally performed in each sample individually through manual gating. 

Manual gating of hundreds of files independently is not only time consuming, but also prone to the 

subjectivity of the technician, introducing more batch effects. To circumvent gating, many available 

data analysis approaches use a clustering method [7] to analyse the integrated dataset, generated 

by concatenating all individual .fcs files. This approach is not only prohibitive in terms of 

computational resources, but clustering approaches are extremely sensitive to batch effects. An 

appealing alternative is normalisation of files to correct for batch effects. However, flow cytometry 

normalisation methods (e.g. CytoNorm [8]) require a shared control across all batches, which is not 

feasible in a clinical setting. Furthermore, biologically relevant information can be lost, especially for 

malignant cells whose expression pattern varies due to biological and not technical reasons. 

In this project we address the above challenges and create an automated immune cell classification 

method based on application of machine learning to treat the flow cytometry measurements. We 

apply our method to a large cohort of paediatric ALL patients. The main idea behind our method was 

to create an annotated reference ALL dataset, acquired by selecting and annotating few but highly 

representative ALL samples capturing ALL heterogeneity. These samples are then used to train a 

neural network classifier that can then identify cell lineages of interest in individual ALL samples in 

little time, eliminating the need for manual gating and greatly speeding up the process. Next, we 

provide detailed information on the available data, methods, and models, and show how our 

approach performs in unseen samples from the paediatric ALL cohort.  
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Chapter 2 Materials and Methods 

2.1 Sample collection, processing, and flow cytometry 

Fresh Li-Heparin- or EDTA-anticoagulated bone marrow aspiration samples were obtained as part 

of routine diagnostic workup when a haematological malignancy was suspected. Samples obtained 

in seven local hospitals in Switzerland were transferred to the diagnostic unit of the Children’s 

Hospital Zurich for a centralised flow cytometric evaluation. If immediate processing was not 

possible, samples were stored at room temperature (Li-Heparin-anticoagulated for max 72 h, EDTA-

anticoagulated for max. 12 h). Samples taken between November 2010 and July 2019 were included 

in the study. Samples were stained according to local protocols based on the European Group for 

the Immunological Characterization of Leukemias (EGIL) consensus guidelines [4]. In brief, cells 

were stained with surface antibodies in Horizon Brilliant Stain buffer (BD) for 15-30 min. 

Subsequently, samples were fixed with IntraSure KIT (BD) according to the manufacturer's protocol, 

except that the last fixation step in 1% PFA was omitted. Cells were directly resuspended in BD 

CellWash (BD) and analysed the same day. Until 10th of January 2017, the standardised EuroFlow 

8-colour Acute Leukaemia Orientation Tube (ALOT) [9] panel was used and samples were acquired 

on a BD Canto II. From 31st of January 2018 onwards, the EuroFlow 8-colour ALOT panel was 

replaced by an in-house established 12-colour panel (ZH ALOT) (Table 1) and samples were 

acquired on a BD LSRII Fortessa. At least 30,000 events in the WBC gate (defined by SSC/FSC) 

were recorded. 

 

 

FITC  
PerCP

-Cy5.5  
PE   

PE-

Cy7  
APC   

APC-

H7  
PB 

Pacific 

Orange  
    

EuroFlow 

ALOT 
MPO#  CD34  cyCD79#   CD19  CD7   sCD3  cyCD3# CD45      

  

FITC  
PerCP

-Cy5.5  
PE 

PE-

CF5

94  

PE-

Cy7  
APC 

APC- 

R700   

APC-

H7  
PB V500  BV605 BV786  

ZH ALOT MPO#  CD34  cyCD79# CD9  CD19  CD7 CD33  CD20  cyCD3# CD45  CD5  sCD3 

Table 1: Design of Euroflow 8-colour ALOT panel and ZH 12-colour ALOT panel. sCD3: surface 
CD3, cyCD3: cytoplasmatic CD3. #: intracellular staining. 

 

 

2.2 Data analysis in diagnostics unit and flow cytometry expert 

laboratory 

Before the acquisition of samples, BD Cytometer Setup & Tracking Research Beads (BD) were run 

to reproducibly set up the cytometer from day to day. Compensation matrix was calculated using BD 

CompBeads (BD). Data from acquired samples were exported as .fcs files. In the diagnostic unit, 

files were analysed with BD FACSDiva Software (Version 8.0) by trained staff members.  The FlowJo 

Software (Version 10.8.1) was used for flow cytometry analysis by an experienced researcher. Cell 

frequencies were assessed by manual gating. 
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Chapter 3 Automated immune cell classification for 

paediatric ALL 

In this report we present our work on developing a machine learning framework for automated 

analysis of a standardised diagnostic childhood lymphoblastic leukaemia staining to extract the 

frequencies of lineage populations. Since B-cell precursor (BCP) ALL represents the main phenotype 

of childhood leukaemia, our analysis focused on that particular disease type [10]. Our method was 

applied to bone marrow samples of a paediatric BCP-ALL cohort enrolled into AIOEP BFM 2009 and 

AIOEP BFM 2017 clinical trial from 2016 – 2019 in and reported to the Swiss AIOEP BFM 

coordinating clinical trial centre at Children’s Hospital Zurich. An overview of the proposed framework 

is given in Figure 1. Briefly, the framework consists of a learning step (black arrows in Figure 1), 

where few representative patient samples are preprocessed, clustered, and annotated to construct 

a reference data which is then used to train a neural network model able to classify flow cytometry 

profiles into known cell lineages, and an inference step, where the remaining unseen samples are 

preprocessed and fed into the trained classifier to identify their cell lineage composition (green 

arrows in Figure 1). Details about the individual steps follow in the next sections. 

 

 

Figure 1: Schematic overview of automated immune cell classification using flow cytometry bone 
marrow measurements. 
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3.1 Dataset description 

To develop our framework, we exploited a dataset of n=187 flow cytometry samples at the time of 

diagnosis from B-ALL patients enrolled in clinical studies and treated in seven hospitals in 

Switzerland from both the EuroFlow ALOT and the Zurich (ZH) ALOT (Table 1). As shown in Table 

2, these panels contain lineage markers which show specific and constant expression patterns on 

non-malignant B cells, T cells, NK cells and Myeloid cells in the bone marrow. Cells which do not 

match the criteria are considered to be doublets or debris and can be classified as "undefined". For 

each panel, out of these 187 samples, 5 were selected to build a reference dataset. Important criteria 

for selection of these files were to capture both hospital or origin variability and disease heterogeneity 

(e.g., files that contained leukemic blasts with variable CD34 and CD45 expression). For the ZH 

ALOT, we excluded markers CD9, CD34 and cyCD3 from the entire analysis due to signal artefacts 

caused by off-scale signal or incorrect compensation in some files. We verified that the signal 

artefacts did not impact the signal in the other channels. Flow cytometry measurements were 

acquired as described in Chapter 2.  

 

 B cells T cells NK cells Myeloid cells B cell blasts 

CD45 pos pos pos pos variable 

CD19 pos neg neg neg variable 

CD79a pos neg neg neg variable 

CD20 neg → pos neg neg neg variable 

CD7 neg pos pos neg neg 

Surface CD3 neg pos neg neg neg 

Cytoplasmatic CD3 neg pos neg neg neg 

MPO neg neg neg pos neg 

CD33 neg neg neg pos neg 

CD34 pos → neg neg neg pos variable 

CD5 neg → pos → neg pos neg neg variable 

Table 2: Expression of lineage markers on healthy B cells, B cell leukemic blasts, T cells, NK cells 
and Myeloid cells. Pos/neg: positive/negative expression of the marker in the cell lineage of 

interest. 

 

3.2 Data preprocessing 

The first step in our proposed pipeline is the automatic preprocessing of the .fcs files, which consist 

of the following substeps: 

 

3.2.1 Gating of live cells 

After loading the measurements in the .fcs files, we need to gate the live cells and remove any debris, 

dead cells and doublets. This step is typically achieved by gating the live cells on the FSC-A, SS-A 

plot, however the gating strategy needs to be adapted to each file individually. To automate this 

process, after removing all negative values from the FSC-A channel, we fit the FSC-A distribution, 

and identify the first local minimum of the distribution plot. This value serves as the low gate threshold 

of our FSC-A channel. We then set the upper threshold to 250,000 following current standard 

practices in the field, and also set the SSC-A gate to a low value of 0 and a high value of 250,000. 



D7.2 – Software to define tumour subclones and association with therapy response                   

iPC D7.2 Public Page 5 

Example results of this automated gating strategy for 4 individual files with pronounced discrepancies 

are seen in Figure 2. 

 

  

Figure 2: Automatic live cell gating of 4 individual .fcs files (columns) where the FSC-A channel 
distribution (top row) and the FSC-A, SSC-A scatter plot is shown. Orange vertical lines (top row) 

indicate low FSC-A gate and red rectangles indicate selected gate on both channels. 

 

3.2.2 Compensation, transformation, and normalisation 

After gating, remaining outlier cells were removed by identifying the top 0.1 percentile of the values 

for each channel and removing the cells that fall on this percentile in at least one channel. For the 

ZH ALOT, we additionally removed the top 0.7 percentile of CD34 channel due to strong presence 

of outliers. Then, the .fcs files were compensated using a spillover matrix with manually curated 

spillover coefficients. The measurements were transformed using an inverse hyperbolic sine (asinh) 

transformation, following standard practice in flow cytometry data analysis, where, for each protein 

vector 𝑦 we have: 

𝑎𝑠𝑖𝑛ℎ𝑦 = 𝑙𝑛 (
𝑦

𝑐
+ √

𝑦

𝑐

2

+ 1 ) 

where c is the cofactor, fixed here to 500. Finally, the transformed measurements were scaled using 

a standard min-max normalisation. 

 

3.3 Data annotation 

After automatic data preprocessing, the data matrices of all 5 input files were independently clustered 

using the popular community detection algorithm Phenograph [11] with a Euclidean distance metric 

and k=200 nearest neighbours. The results of the clustering were assessed visually using a Uniform 

Manifold Approximation and Projection (UMAP) [12] dimensionality reduction approach and the 

clusters were annotated as T cells, normal B cells, NK cells, Myeloid/monocyte cells, Leukemic 

Blasts or Undefined, based on prior knowledge of protein expression in these cell lineages (Table 

2). The results of this process for one of the input samples are shown graphically in Figure 3. 
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Figure 3: Annotation process of one training sample.  

 

(A) UMAP projection colored by protein intensity for all 8 channels of the EuroFlow ALOT. (B) 
Corresponding cluster labels as identified by Phenograph. (C) Results of annotations and assigning 
clustering labels to known cell lineages. 

 

This process was repeated and carefully assessed for all 5 files. Finally, all 5 reference files together 

with their cell lineage labels are concatenated to create the reference dataset. The same process 

was repeated for the ZH ALOT samples. 

 

 

3.4 Training of cell lineage classifier 

The integrated and labelled dataset is then used to train a neural network classifier that can 

automatically predict cell lineages from the input measurements. We first randomly split the dataset 

into a training and test set (70% and 30% of the data, respectively). The neural network model 

architecture consisted of 1 input layer of 8 neurons, two hidden layers of 30 neurons each and one 

output layer of 6 neurons, equal to the 6 classes in the data (Figure 4 A). All layers are fully connected 

and use a Rectified Linear Unit (ReLU) activation function, apart from the output layer that uses a 

sigmoid activation function. The classifier was trained using the Adam optimizer [13] with a learning 

rate of 0.001 and a batch size of 256. Its performance was evaluated using a weighted cross-entropy 

loss function that uses the inverse class frequencies as class weights. The weighted loss function 

helped tackle the class imbalance found in our data, where some cell lineages (e.g., NK cells) are 

found in much smaller proportions than others. Training was finalised after at most 500 epochs; we 
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also used an early stopping criterion by terminating training when the model’s performance failed to 

improve for 20 consecutive epochs. 

 

 

Figure 4: Model architecture and training results of cell lineage neural network classifier. 

 

(A) Model architecture of the neural network. The neural network consists of 1 input layer of 8 
neurons, two hidden layers of 30 neurons each and 1 output layer of 6 neurons, equal to the 6 
classes in the data. All layers are fully connected using a Rectified Linear Unit (ReLU) activation 
function, apart from the output layer that uses a sigmoid activation function. The classifier was trained 
using the Adam optimizer [13] with a learning rate of 0.001 and a batch size of 256. (B-C) Evolution 
of the categorical cross entropy loss function and the balanced accuracy in the training and test data 
(blue and orange curves, respectively). Training was terminated after 60 epochs due to early 
stopping. 

 

To examine the model’s performance, we first assessed the evolution of the loss function and the 

balanced accuracy during training (Figure 4 B-C), where we observed that the model converged 

after approximately 60 epochs, reaching a very high balanced accuracy of approximately 0.98. We 

also assessed the performance of the classifier per class, where we observed that the model’s F1-

score (harmonic mean of precision and recall) for all cell lineages was higher than 0.90.   

 

 

Figure 5: Performance of the classifier for each cell lineage in terms of precision, recall and F1-
Score. 
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3.5 Testing of cell lineage classifier in unseen samples 

Since the model’s performance on the test data from the 5 representative files was deemed 

satisfactory, we next applied it to the remaining samples. These samples were first preprocessed 

following the automated strategy of Section 3.2 and then fed into the trained classifier. The results 

for 3 example unseen datasets can be seen in Figure 6, which shows UMAP embeddings of the 

high-dimensional measurements coloured by the model’s predictions. Since this data has not been 

annotated, we cannot derive a quantitative measurement of the model’s performance. However, 

although the model was never given the UMAP embedding as an input, we observe that the clusters 

within these embeddings are remarkably homogeneous with respect to their class labels, a result 

that we further validated by assessing the marker expression in each UMAP cluster. Taken together, 

these results strengthen our confidence in the model’s ability to accurately identify cell lineages from 

unseen measurements.  

 

Figure 6: Performance of the model in 3 unseen samples. 

 

For each sample, a UMAP plot of the measurements coloured by the prediction of the classifier is 
shown.  
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Chapter 4 Association of cell lineage frequencies 

with clinical data 

After demonstrating that the cell lineage classifier can accurately detect cell lineages of interest, we 

feed all remaining unseen samples to predict, for each one, its cell lineage composition. This process 

was performed for both the EuroFlow and ZH ALOT models, resulting in an integrated dataset where 

each patient is represented by a vector of cell lineage frequencies. We then proceeded to cluster 

both rows and columns of this integrated dataset using a hierarchical clustering method with an 

average linkage. To compute distances between the rows and columns we used a correlation metric 

and a Jensen-Shannon divergence score, respectively. The results of this process can be seen in 

Figure 7, where we also overlay various metadata on the top of the heatmap. We observe that the 

ALOT label (EuroFlow or ZH) is randomly distributed across all clusters, indicating that there are no 

batch effects associated with the ALOT in the integrated dataset. The same is true for the City of 

Origin label. Apart from a small cluster on the left that is characterised by low blast frequency, most 

of the samples have a high blast frequency that dominates the other populations. We also do not 

observe a clustering of the high risk or relapse samples, which again appear to be randomly 

distributed across all clusters high for blasts.  

 

 

Figure 7: Clustering of cell lineage frequencies per sample and its associations with various ALL 
metadata. 

 

In the clustered heatmap, columns indicate patient samples, rows correspond to cell lineages of 
interest and colour intensity indicates the frequency of cell lineage. Relevant ALL metadata are 
shown on top of the heatmap, with their exact values given in the bottom legend. 
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We then proceeded to focus on the percentage of leukemic blasts with respect to different disease 

metadata. We observe that there is no association between blast frequency and risk stratification or 

relapse, but samples that exhibit a minimal residual disease slow early response (MRD SER) at day 

33 appear to all be very high in terms of blast frequency (Figure 8). 

 

 

Figure 8: Association of frequency of leukemic blasts and various disease metadata. 

 

We then focused on the nature of the blast population, which, as previously explained, exhibits 

variable expression of CD34. We quantified the percentage of blasts that are positive for CD34 and, 

this time, we observe that the frequency of CD34 positive blasts is associated both with the risk 

stratification and MRD SER, with high-risk samples and MRD SER positive samples high for CD34 

blast frequency.  
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Figure 9: Association of percentage of CD34 positive leukemic blasts with disease metadata. 
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Chapter 5 Summary and Conclusion 

This report describes the development of a unified machine learning framework for automated 

analysis of a standardised diagnostic paediatric leukaemia staining to extract the frequencies of cell 

lineage populations. The framework exploits a large cohort of bone marrow samples from paediatric 

B-ALL patients analysed in the clinic by standard diagnostic flow cytometry analysis using two 

different staining panels. Our work overcomes the need for manual gating and addresses the issues 

of staining irregularities and other sources of batch effects. This is achieved by circumventing the 

need to integrate the data and creating instead a baseline cell lineage classification model that can 

accurately detect cell populations of interest in unseen flow cytometry samples. Our model provides 

a proof of concept that our method can deal with current challenges in diagnostic flow cytometry data 

analysis and allows a fast, robust and accurate identification of cell populations of interest with little 

to no expert curation of results. 

As a future step, we are currently working on benchmarking our method against other known flow 

cytometry automated gating approaches (e.g., DeepCyTOF [14], flowDensity [15], OpenCyto [16], 

FlowMap-FR [17]). We are also working towards validating our method using a second, independent 

B-ALL cohort, hoping to show that it can generalise equally well when data from a distinct unseen 

cohort are used.  
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Chapter 6 Future work 

The software presented in this deliverable has been developed and optimised using B-ALL samples, 

as the data was readily available in the iPC consortium through the labs of UZH partners Profs. 

Burkhard Becher and Jean-Pierre. Bourquin. We are currently writing a manuscript to publish the 

software and data. We will provide an update and short summary about the status of the manuscript, 

data and code release in the final periodic report. 

 

In a parallel collaboration with Prof. Burkhard Becher, we are adapting the presented methodology 

to the analysis of bone marrow AML samples, where we aim at characterising the cellular and 

molecular patterns that distinguish diagnostic, remission and relapse samples from the same patient. 

In future work, we will extend the analysis to include solid tumours. We are currently discussing with 

other iPC partners data generation for solid tumours.  
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Chapter 7 List of Abbreviations  

Abbreviation Translation 

ALL Acute lymphoblastic leukemia 

ALOT Acute Leukemia Orientation Tube 

BCP-ALL B cell precursor acute lymphoblastic leukemia 

ReLU Rectified Linear Unit 

UMAP Uniform Manifold Approximation and Projection 
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