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Executive Summary 

The primary goal of iPC is to inform the selection of therapies for paediatric cancer patients based 
on personalized patient data, including demographic, clinical, and molecular data. Towards this aim, 
iPC has collected data and designed computational models to associate data with disease states, 
therapeutic responses, and outcomes. Here, we describe efforts to decompose cancers into tumor 
subclones that convey higher risks for therapeutic resistance and poor outcomes. We describe 
progress in delineating high-risk subclones in hepatoblastoma, paediatric AML, and neuroblastoma. 
We also describe iPC-developed technologies that were used to accomplish these tasks. 
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Chapter 1 Introduction 

iPC researchers have made progress on studying tumor subclones in each of our proposed cancer 
types. Here, we focus on work in hepatoblastoma (HB), paediatric AML, and neuroblastoma (NB).  

We recently proposed a new HB subtype, HB and hepatocellular carcinoma (HCC) histological 
features (HBC) in order to reclassify some high-risk paediatric liver tumors and to invite therapies 
that are focused on this subtype (Sumazin et al., 2022). In Figure 1 we describe a diagnostic protocol 
to identify HBCs in the molecular pathology lab and distinguish them from HBs and HCCs. We used 
a combination of technologies, including iPC-developed multi-WES strategies (Manica et al., 2020), 
and single-cell and single-nuclei DNA and RNA sequencing to study HB, HBC, and HCC subclones. 
Our findings include the identification of chemoresistant subclones and biomarkers that can be used 
to identify these subclones at diagnosis.  

We collected scRNA-Seq and snRNA-Seq samples for each tumor type, with the aim to use these 
samples to define high-risk subclones and characterize their transcriptomes. Our preliminary tests 
identified the top-performing methods to deconvolve RNA-Seq profiled samples using the 
transcriptomes of high-risk subclones, however, the precision of the top methods was poor in some 
data sets. Consequently, as described in Chapter 3, we developed a method with dramatically 
improved deconvolution accuracy. In Chapters 4 and 5 we showed that this method can now be 
applied to test cases in paediatric cancer, identifying regulatory network modules that are predictive 
of therapeutic resistance and outcomes in paediatric AML and NB. Our work in D7.3 paves the way 
to developing paediatric cancer atlases that can be used to predict outcomes for patients based on 
RNA-Seq profiles of their tumors at diagnosis. 
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Chapter 2 Hepatoblastoma predictive subcolnes 

Hepatoblastoma (HB) is one of 
the most genetically stable types 
of cancer (Gröbner et al., 2018). 
However, higher risk HBs and 
HBs in older patients contain 
genetic mutations (Sumazin et 
al., 2017) and display pathway 
dysregulation that have been 
more commonly observed in 
hepatocellular carcinoma (HCC). 
We recently proposed a liver-
cancer subtype (HBCs) that is 
associated with higher risk and 
can be described as an 
intermediate state between HBs 
and HCC. Our proposed 
diagnostic protocol for identifying 
HBCs is depicted in Figure 1 
(Sumazin et al., 2022). The 
algorithm reclassifies some 
hepatocellular neoplasms into 
HBCs, and 3 types of HBCs are 
considered. Biphasic HCN NOS 
HBCs have discernible tumor 
areas with distinct HB or HCC 
features, while equivocal UCN 
NOS HBCs are characterized by 
cytological features and growth 
patterns that were intermediate 
between HB and HCC. HB FPAs 
present focal atypical histological 
features including anaplasia, 
areas with significantly increased 
pleomorphism, or prominent 
macrotrabecular pattern. We note 
that Hepatocellular neoplasm not 
otherwise specified (HCN NOS) 
is a recently proposed provisional 
category of liver cancers (López-
Terrada et al., 2014) with 
diagnostic and treatment 
protocols that remain evolving. 
Here, we differentiate between 3 
HBC subtypes, including HB FPAs and the 2 HCN NOS subtypes, biphasic HCN NOS and equivocal 
HCN NOS.  

The creation of the HBC liver cancer category is intended to promote HBC-specific treatment that 
would lead to improved outcomes for these patients and to highlight the biology of these transitional 
cancers. We hypothesize that HBCs are intermediate childhood liver tumors that are partially 
chemosensitive and may be curable even if the cancer appears to be difficult to fully resect at 
diagnosis. However, our preliminary work suggests that improved outcomes for HBCs require 

 

Figure 1: Preliminary proposal for a diagnostic algorithm for HBCs.  
Hepatocellular malignant neoplasms are categorized by histological 
review to specific HB subtypes, HB FPAs, equivocal and biphasic 
HCN NOSs, and HCCs. Fetal HBs are well-differentiated, uniform 
in size with round nuclei and have minimal mitotic activity. 
Embryonal HBs have high nucleus to cytoplasm ratios, angulated 
nuclei, primitive tubules. Small-cell undifferentiated HBs have no 
architectural pattern, minimal pale amphophilic cytoplasms, and 
round to oval nuclei with fine chromatin. Cholangioblastic HBs are 
bile duct cells, usually at the periphery of epithelial islands. 
Fibrolamellar and non-fibrolamellar HCCs are characterized by 
larger cells that display more nuclear pleomorphisms with 
prominent nucleoli, pseudo-inclusions and abnormal mitoses, grow 
in trabeculae, nests, and solid sheets. HB FPAs have focal atypia, 
anaplasia, and macrotrabecular pattern. HCN NOSs include cells 
with features that are commonly associated with both HBs and 
HCCs (equivocal), or distinct HB-like and HCC-like regions 
(biphasic HCN NOSs). While the HB and HCC subtypes mentioned 
can be diagnosed by histology alone, we identified characteristic 
genetic features that could be used to confirm HBC diagnoses.  
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aggressive intervention and that HBC patients may benefit 
from targeted HBC-personalized therapies. The biology of 
HBCs is of import because they offer a unique snapshot into 
the transformation of aggressive HBs into HCCs, and we 
hypothesize that studying HBCs will help map out the 
diversity of HBs and the evolution of HCCs from HB 
precursors.  

HBCs are composed of multiple tumor subclones 

Our recent work suggested that hepatocellular neoplasms 
that display a combination of HB and HCC histological 
features (HBC) either across large tumor areas or even 
focally are associated with poor outcomes. We showed that 
these cancers are genetically heterogeneous and contain 
both tumor subclones that molecularly resemble 
chemosensitive fetal or embryonal HBs and other subclones 
that are chemoresistant and better resemble HCCs. In our 
study, aggressive therapies—high-dosage chemotherapy 
followed by complete resection or transplantation at early 
treatment stages—significantly (hazard ratio 2.5X-4.3X at 
95% confidence) improved outcomes for HBC patients 
(Sumazin et al., 2022).  

This is especially the case for tumors that are visibly 
multiclonal with either well-defined regions (Figures 2, 3, 4A) 
or co-localized cells with mixed histologies (Figure 4B). To 
identify genetically distinct tumor subclones in low- and 
high-risk tumors, we expanded our preliminary studies using 
iPC technologies and methods, including Chimæra (Manica 
et al., 2020). Chimæra predicts tumor phylogenies by 
comparing the genetic composition of regions across space 
and time (Figure 6). It deconvolves CNAs, mutation 
frequencies, mutation-to-subclone associations, and to 
predict the clonal composition of profiled biopsies from 
assays that average profiles across cellular ensembles—
e.g., RNA-Seq or NanoString profiling of heterogeneous 
tumors (Figure 3). Chimæra improves on the accuracy of 
mutation frequency and copy number deconvolution by 
profiling multiple biopsies from the same tumor. It is 
designed for tumors with high genomic instability and 
includes an optimization step to improve mutation-frequency 
estimates in each biopsy. The advantages of Chimæra 
analysis over single-cell CNA-profiling are the inclusion of 
analysis of both mutations and CNAs from the same 
samples, our ability to profile FFPE with higher accuracy 
and select multiple tumor regions based on histology, and 
its (ten-fold) lower cost. When used in tandem, the two 
approaches are complementary. 

To maximize Chimera’s benefit, we focused on cancers with 
histologically distinct regions. Our results revealed that 
these cancers undergo complex genetic development, from 
pre-malignant states to HB-like, HBC-like, and sometimes 
HCC-like states. As an example, we show the inferred etiology of an HBC, as observed by Chimera 
based on 6 tumor regions and at 2 time points (Figure 6). All tumor cells in these samples were 
derived from cancer cells with amplifications in chromosomal arms 1q and 2q. Some HB-like cancers 

 

Figure 3: CNAs and histology of a 
biphasic HBC.  
CNAs of an (A) HB-like region and (B) 
an HCC-like region were estimated by 
Affymetrix OncoScan and suggested 
a wide-range of chromosomal gains 
and losses, especially in the HCC-like 
region. (C) Histology of the HB-like 
region on the left (also D) and HCC-
like region on the right (also E) that 
has a nodule with frank 
macrotrabecular pattern and other 
HCC features. 
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Figure 2: Glypican-3 staining of a 
section of a high-risk HBC revealed 
areas enriched for HCC- and HB-like 
cells forming tumor areas with fetal 
and embryonal features, and areas 
with macrotrabecular patterns.  
Non-tumor cells are Glypican-3 
negative. 
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acquired amplifications in chromosome 8, and these cells 
transformed to HBCs after acquiring additional mutations, 
including amplifications of chromosome 17. chr17(+) HBC 
cells were a small minority at the time of diagnosis, but this 
cancer population expanded dramatically at the time of 
transplant and in the metastatic lesion (Figure 6). 

In addition, we used single nuclei copy number alteration 
(CNA) profiles to demonstrate HBC’s genetic clonality and 
hypothesized that genetic clones have differential 
treatment responses. Indeed, analysis of molecular profiles 
of patients before and after therapy and same-patient 
PDXs with divergent responses to treatment suggested the 
presence of treatment-response predictive expression and 
genetic alterations. CNA profiles, including in single-cell 
resolution, and profiles of multiple regions per tumor 
suggested the presence of high-risk HBC subclones with 
clonal CNAs.  

Single-cell RNA Sequencing identifies differential risk 

We relied on a combination of scRNA-Seq and scCNA-Seq 
assays to identify tumor subclones that are associated with 
differential risk. In addition, we concurrently evaluated  

primary samples and PDXs using scRNA-Seq before and 
after treatment by the standard of care chemotherapy. The 
results pointed to the presence of chemoresistant and risk-
associated tumor subclones with elevated expression of 
cMYC, YAP1, and IGF2 pathways. We are currently 
targeting these pathways in mammalian models to 
biochemically investigate their effects on chemosensitivity, 
vascular invasion, and metastasis. 

Our analyses of HBCs suggested that they are high-risk 
cancers that contain a mixture of both HB and HCC 
features. We used single-cell resolution profiling to 
investigate the cellular composition of these tumors and 
discover whether they are composed of a combination of 
HB and HCC cells or whether these tumors have HBC 
cells. Our results revealed that some tumors include HB 
and HCC cells, as well as cells that cannot be classified as 
either HB or HCC and contain features of both tumor 
classes (Figure 7). We concluded that HBC may contain 
any mixture of these 3 cell types in various proportions. Our 
results demonstrated that HBCs should be treated as a 
separate high-risk paediatric liver cancer subtype.  

Summary 

In total, we studied tumor subclones in samples from 48 
HBC, 12 HCC, and 73 HB pediatric patients. We used single-cell resolution assays to study 
subclones of genetically heterogenous cancers, and matched PDXs and primary tumor samples, 
including PDX responses to treatments (Figure 8). Our results revealed new tumor biology with 
implications for liver cancer diagnosis and treatment. Namely, we defined a new subtype of liver 
cancer and showed that this high-risk subtype is composed of a variety of cancer cells, including 
high- and low-risk cancer cells. We showed that high-risk cancer cells may be derived from lower-
risk cells and that the increase of risk is associated with the acquisition of genetic alterations, 

 

Figure 4: Representative 
histopathology of HBCs with (A) areas 
of low-risk HB-like cells that are 
adjacent to high-risk HCC-like cells 
(4X), and (B) more homogeneous 
patterns of low-risk HB cells that are co-
localized with other HBC cells with high 
nuclear-cytoplasmic ratios, 
pleomorphism, and increased mitotic 
count (10X). 
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Figure 5: Tumor subclones are 
associated with collections of somatic 
alterations, each with a unique copy 
number. (A) Chimæra infers clonal 
phylogeny based on (B) WES profiles 
of multiple biopsies from the same 
tumor. As an example, (C) Inferred 
phylogeny from 10 biopsies (regions) 
was used to estimate (D) the clonal 
composition of each biopsy. 
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including mutations and CNAs. We showed that HBCs 
require aggressive treatment and that the outcomes of 
resected chemo-treated patients is very poor. Instead, the 
outcomes of HBC patients that were transplanted was 3x 
better. We identified biomarkers of risk that significantly 
predict patient outcomes and are differentially expressed 
across tumor subtypes. In addition, we assembled a panel 
of biomarkers for diagnosis in the molecular pathology lab. 
Our investigation results were followed up in PDXs, 
including PDXs that showed differential responses to 
chemotherapy (Figure 8). To reveal biomarkers of 
chemosensitivity and test targeted therapeutics that could 
improve outcomes for patients with high-risk chemoresistant 
tumor subclones.  

Our study of pediatric liver cancers revealed the potential of 
technologies using multiple biopsies per patient, as well as 
single-cell resolution profiling in predicting risk, 
understanding the evolution of cancers, and identifying the 
source of resistance to treatment. However, the high cost of 
profiling and the sample requirements of scRNA-Seq, 
snRNA-Seq, and scCNA-Seq prevent the use of these 
technologies on a large scale. Instead, we proposed to 
comprehensively catalogue cell types for each cancer type 
that can later be used to deconvolve patient samples and 
predict cell type compositions based on bulk RNA-Seq 
profiles of cancer samples. 

 

 

 

 

Figure 6: Inferred HBC etiology by 
Chimæra, with a focus on CNAs. 
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Figure 7: HBCs that contains a HB, 
HBC, and HCC cells. 

Normal

Normal

Normal

Normal

Normal
HCC genes HB genes

HCC

HCC

HB

HBC

HBC

HB|HCC biomarker genes

 

Figure 8: PCA and snRNA profiles of 2 same-HBC (MOLR314) biopsies and derived PDXs that respond 
differentially to treatment by Cisplatin.  

(A) PCA of RNA-Seq profiles of 2 biopsies and PDXs derived from them, and a normal adjacent sample, 
suggested gene expression differences between the biopsies and their derived PDX clusters (designated 
as -1 and -2). (B) Single-cell RNA profiles of a patient biopsy and PDX. 80% of the patient cells were 
normal, but almost 2,000 cancer cells were profiled, revealing multiple HBC clones, including clones that 
were and weren’t modelled by the PDX. (C) Growth of the orthotopic same-HBC PDXs after Cisplatin 
treatment in 10-day cycles suggested the presence of both chemosensitive and (D) resistant HBC 
subclones. 
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Chapter 3 Single-cell to bulk RNA-Seq 

Deconvolution 

Single-cell and single-nuclei RNA-sequencing (scRNA-Seq and snRNA-Seq) technologies have 
revolutionized our ability to accurately quantify various cell types and states in healthy or diseased 
tissue biopsies. Based on cell-type specific gene expression signatures, individual cells can be 
labeled and enumerated, allowing comparisons of cell fractions between tissue samples and 
associated changes in cell fractions with relevant biological or clinical parameters. For example, 
scRNA-seq analyses of tumor biopsies have revealed differences in various immune cell types and 
states between patients that respond to immune checkpoint inhibition therapies and patients that do 
not. Such findings could reveal novel therapeutic applications or provide us with biomarkers to 
improve therapy response prediction. 

While these methods provide cell-type specific information at unprecedented resolution, they also 
come with several challenges that prevent efficient implementation in a clinical setting. One major 
challenge is the high per sample cost for library preparation and sequencing when relying on 
commercially available solutions. In addition, there are stringent requirements associated with 
sample collection, processing, and storage as to avoid technical biases in the gene expression 
profiles. For example, the temperature at which tissues are dissociated in single cell suspensions 
can impact stress response in the cells, and subsequent changes in gene expression. Moreover, 
cryopreservation of dissociated cells has been shown to result in a loss of epithelial cell types 
(Denisenko et al., 2020).  

Bulk RNA-Seq methods are less impacted by these factors, yet they only provide an averaged gene 
expression profile of the entire tissue sample. Over the past years, numerous computational 
methods, collectively referred to as deconvolution methods, have been developed to infer cell type 
proportions from bulk RNA-Seq profiles using a reference matrix composed of cell-type specific gene 
expression signatures (Avila Cobos et al., 2020; Decamps et al., 2021). While some of these 
methods only rely on the reference matrix to enumerate cell type proportions, others make use of 
scRNA-seq data from the same tissue type as the bulk RNA-Seq profiles to perform deconvolution. 
In various benchmarking efforts, we and others have shown that different factors impact the 
performance of deconvolution methods, including data transformation, data normalization and the 
composition of the reference matrix. While these studies have been informative to understand which 
factors impact performance, they have failed to quantify the absolute performance of deconvolution 
methods compared to scRNA-Seq, which is considered the gold standard. 

We envision using single-cell profiling assays of each tumor type to categorize cell types for these 
tumors and create a tumor-specific catalog with clinical predictions associated with cell types. This 
catalog could then be used to predict sample composition using deconvolution of its bulk RNA-Seq 
profile. The composition of samples will help select therapies to target all cancer cell types present 
in each tumor. In order to achieve this goal, we needed to evaluate deconvolution methods. In total, 
we evaluated 6 deconvolution methods in 8 different datasets, each composed of samples that were 
profiled by both bulk RNA-Seq and scRNA-seq or snRNA-seq. One of these datasets was composed 
of artificial cell-line mixtures where expression and abundance are well characterized, and where 
both relative and absolute quality of deconvolution efforts can be evaluated. By comparing observed 
cell fractions (derived from deconvolution of bulk RNA-Seq profiles) to expected cell fractions 
(derived from scRNA-seq or snRNA-Seq profiles of the same samples), we were able to accurately 
quantify the absolute performance of each deconvolution method. Our results highlight consistent 
performance differences between methods across datasets and reveal a dramatic performance 
improvement when transforming bulk RNA-Seq profiles to scRNA-seq spaces before applying 
deconvolution. Our conclusions led to the development of a new deconvolution method, which 
produced improved results for all our tests.  
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Cell mixtures used to evaluate scRNA-Seq accuracy 

While concurrent bulk RNA-seq and scRNA-seq assays can be used to evaluate deconvolution 
accuracy, they lack controls for both true composition and cell-type expression estimates. Namely, 
divergent estimates from the two assays cannot be resolved, and technical analysis errors may not 
be identified due to missing information. Consequently, accurate and fully resolved deconvolution-
strategy evaluations require fully characterized datasets, where the expression profiles and 
composition of each cell type are known with high degrees of accuracy. Towards this aim, we 
developed a solid tumor model that includes multiple solid-tumor cell types, immune cells, and lower-
abundance stem cells. Following this model, we established in vitro cell mixtures that are composed 
of varying proportions of cells from 3 breast cancer lines (T47D, BT474, MCF7), monocytes (Thp1), 
lymphocytes (Jurkat), and stem cells (hMSC).  

Mixture composition was estimated using input cell counts. Cells from each cell line and each mixture 
were profiled by bulk RNA-seq in triplicates. Mixtures were profiled by flow cytometry to 

 

Figure 9: Mixture design.  

(A) Breast cancer cells (BT474, T47D, and MCF7), leukemia cells (THP1 and Jurkat), and human 
mesenchymal stem cells (hMSCs) were cultured and used to generate 6 mixed cell populations. Each 
cell line was profiled individually by bulk RNA-Seq in triplicates, and each mixture was profiled by bulk 
RNA-Seq and flow cytometry in triplicates as well as by a 10x genomics Chromium controller to generate 
6 scRNA-Seq datasets. (B) Mixtures were composed of varying proportions of cancer cells, with leukemia 
cells accounting for 15% and hMSC accounting for 0.5% (M1 and M4) to 2% (M3 and M6) of cells.  (C) 
Clusters of cells in mixtures profiled by scRNA-Seq data corresponded to composing cell types, as 
identified based on biomarker expression profiles. (D) The integration of scRNA-Seq profiles of our 
mixtures (in gray) and scRNA-Seq profiles of BT474, T47D, MCF7, BT483, AU565, HCC70, and DU4475 
(Gambardella et. al., 2022) revealed a significant overlap between profiles of BT474, T47D, and MCF7 
cells but not BT483, AU565, HCC70, and DU4475 cells and our inferred BT474, T47D, and MCF7 
clusters, respectively. (E) Cell counts at the time of mixture generation were significantly correlated with 
cellular compositions, as estimated by flow cytometry (r=0.97) and (F) by scRNA-Seq clusters (r=0.96). 
However, the correlation between cellular composition estimates by flow cytometry and scRNA-Seq 
clusters was significantly lower (r=0.92, p<0.05 by Fisher’s transformation). (G) Ordinary least squares 
regression (OLS) deconvolved the composition of our mixtures with high accuracy (r=0.95). (H) OLS also 
deconvolved our mixtures using cell-type expression estimates from scRNA-cluster profiles with 
significant accuracy (r=.72, p<1E-4), but because of inaccuracies in scRNA-Seq derived expression 
profiles, OLS accuracy was significantly (p<1E-5) lower than when using bulk RNA-Seq profiles of each 
cell type. 
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independently evaluate their composition and by scRNA-seq (Figure 9A, Supplemental Table 1). 
The proportions of breast cancer cell lines varied across mixtures, with some mixtures composed 
predominantly of one cell type (e.g., 66% of Mixture 1 were T47D cells) and others having a balanced 
composition (e.g., Mixture 4). Monocytes and lymphocytes accounted for 15% of the mixtures, and 
hMSCs abundance varied from 0.5% to 2% (Figure 9B). 

UMAP analysis of mixture scRNA-seq profiles verified the existence of 6 clusters with biomarkers 
that correspond to their 6 composing cell types (Figure 9C). We confirmed breast-cancer cell type 
identities by integrating 7 scRNA-seq profiles of breast-cancer cell samples(Gambardella et al., 
2022) including T47D, BT474, MCF7 and 4 cell lines that were not used in our mixtures (BT483, 
AU565, HCC70, DU4475); see Figure 2D. Cellular composition estimates based on absolute cell 
counts that were determined when assembling the mixtures showed high correlations with 
composition estimates by flow cytometry and scRNA-seq (r=0.97 and r=0.96 respectively; Figure 
10E,F). However, the correlation between estimates by flow cytometry and scRNA-Seq clusters were 
significantly lower (r=0.92, p<0.05 by Fisher’s transformation). This suggested composition 
estimates by cell counts are the most accurate, and that flow cytometry and scRNA-Seq introduce 
partially independent errors to composition estimates. Overall, however, these results confirmed the 
mixture composition as estimated by cell counting and demonstrate that it is reflected in scRNA-seq 
data with good accuracy. 

Unlike scRNA-Seq based mixture composition estimates, which had high correlation with 
composition estimates by cell counts (r=0.96, Figure 9F), the correlation between scRNA-Seq based 
expression profiles of individual cell types (clusters) and bulk expression profiles of these cells were 
not as high. Pearson correlation of the profiles of T47D, BT474, and MCF7 cells and their respective 
bulk RNA-Seq profiles were r=0.53, r=0.53, and r=0.55, respectively; Jurkat and Thp1 had 
correlations of r=0.66 and r=0.63, respectively; hMSCs, which were the least abundant cells in each 
mixture, were correlated at r=0.16 with their bulk RNA-Seq profiles. Restricting comparisons to the 
top expressed genes did not improve these correlations.  

To evaluate the effect of expression-estimate inaccuracies on the quality of deconvolution, we tested 
the predictive accuracy of ordinary least squares regression (OLS) in predicting mixture composition 
from its bulk profiles and using either scRNA-Seq or bulk-derived expression profile estimates for 
each cell type. OLS is used to solve a simple set of linear equations that seeks to find the optimal 
composition 𝑃 of a set of mixtures with bulk RNA profiles 𝑍 to minimize the difference between the 
observed bulk RNA-Seq profiles and the abundance-weighted sums of the expression profiles of 
composing cell types 𝑋. Namely, given bulk expression profiles {𝑧𝑖 ∈ 𝑍} of each mixture, and 
expression estimates for each cell type 𝑗 {𝑥𝑗 ∈ 𝑋}, we see to identify 𝑝𝑖𝑗 ∈ 𝑃 across all mixtures 𝑖 and 
cell types 𝑗 to minimize Equation 1. 

min
𝑃

∑ |𝑧𝑖 − ∑ 𝑝𝑖𝑗𝑥𝑗𝑗 |
2

𝑖  for mixture 𝑖 and cell type 𝑗   Equation 1  

Our results suggested that OLS can estimate mixture composition with high accuracy when input 
expression profile estimates are accurate. Namely, using bulk RNA-Seq profiles of each cell type, 
OLS composition predictions had Pearson correlations of r=0.95 with mixture composition estimates 
by cell counts (Figure 9G). However, when using scRNA-Seq based expression profile estimates of 
the cell types, this correlation declined to r=0.78 (Figure 9H). Note that the correlation r=0.78 is 
significant at p<1E-5, suggesting that, overall, OLS can accurately predict composition in our 
mixtures using scRNA-Seq based expression estimates. However, as expected, hMSC composition 
estimates were the least accurate (Figure 9H). 

Having confirmed the quality and validity of the in vitro cell mixtures and associated data, we applied 
our deconvolution benchmarking framework to the bulk RNA-Seq and scRNA-seq data of the 6 
mixtures (Figure 3A). We observed substantial differences in performance (i.e. observed versus 
expected fractions) between deconvolution methods, with DWLS outperforming the other 5 methods, 
irrespective of the bulk RNA-seq and scRNA-seq normalization strategy. Overall, normalization of 
the bulk RNA-seq data with TPM resulted in better performance compared to TMM, LogNormalize 
or no normalization. Normalization of the scRNA-seq derived reference matrix did not impact 
performance. All methods performed poorly on the hMSC cells, which were present at fractions of 
1% or lower in each of the mixtures. All methods also underestimated the fraction of Jurkat cells in 
several mixtures, but this was most pronounced for CIBERSORT, FARDEEP, RLR and NNLS. 
MuSiC also underestimated the fraction of THP1 cells. Together, these observations demonstrate 
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that, in an ideal setting, with concordant scRNA-seq and bulk RNA-seq, deconvolution with DWLS 
leads to the most accurate cell type proportions estimates, as depicted in Figure 10. However, 
DWLS’s accuracy on some tissues, and especially on cryopreserved tissues was poor, producing 
composition estimates that are too inaccurate to be used in practice. To overcome this, we set out 
to develop alternative methods that integrate strategies across multiple past deconvolution efforts. 

 

 

 

 

Figure 10: Performance comparisons suggested that DWLS deconvolution is the most accurate on our 
cell mixture assays (top) and on datasets with concurrent bulk RNA-Seq and scRNA-Seq or snRNA-Seq 
profiles (bottom). However, even when outperforming other methods DWLS’s performance was poor on 
some datasets. 
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Hybrid bulk RNA-Seq transformation and optimization with Janus 

Janus is a conversion-dampened weighted least squares strategy to transform and deconvolve bulk 
RNA-seq data into scnRNA-seq vector spaces. Similar to Bisque (Jew et al., 2020), Janus learns a 
simple linear transformation from concurrent bulk RNA-seq and scnRNA-seq profiles. 

Namely, given bulk RNA-seq profiles 𝑍 and concurrent pseudobulk scnRNA-seq derived profiles �̂� 

of the samples in the dataset, then the bulk RNA-seq expression profile of each gene 𝑔 that is 

expressed in both the bulk and scnRNA-Seq profiles is mapped to its pseudobulk profile according 

to Equation 2; �̂�𝑔,𝑖 and 𝑧𝑔,𝑖 are the pseudobulk and bulk profiles of gene 𝑔 in sample 𝑖, respectively, 

and the coefficient 𝑎𝑔 and constant 𝑏𝑔 form the linear transformation for each gene 𝑔. 

  argmin
𝑎,𝑏

∑ (�̂�𝑔,𝑖 − (𝑎𝑔𝑧𝑔,𝑖 + 𝑏𝑔))
2

𝑖      Equation 2  

This linear transformation is applied to all other bulk RNA-seq profiles to transform them to scnRNA-

seq space. The transformation minimizes the deviation between a sample’s pseudobulk and bulk 

RNA-seq profiles by mapping the bulk RNA-seq expression profile of each gene to the magnitude 

and deviation of pseudobulk scnRNA-seq values. Equation 2 applies naturally when converting bulk 

RNA-seq profiles with no concurrent scnRNA-seq profiles. However, when testing deconvolution on 

our datasets, which included concurrent bulk RNA-seq and scnRNA-seq profiles for each sample, 

we used a leave-one-out strategy. Here, the linear transformation was optimized using all but one 

sample and was then used to transform the bulk RNA-seq profile of the remaining sample. This 

transformed profile was then used to predict the composition of the sample with a dampened 

weighted least squares strategy like DWLS (Tsoucas et al., 2019). Deconvolution performance was 

determined using cell counts for our cell mixtures and estimates from single-cell profiles for patient 

samples with concurrent bulk and scnRNA-seq profiles. Cell counts are the most accurate and 

unbiased estimates for our cell mixtures, and single-cell estimates are our only estimates for the true 

composition of patient samples. 

We note that the proposed simple linear transformation in Equation 2 is one of many. Indeed, Bisque 

proposed an alternative transformation that could be used more generally. We tested the following 

formulation, and it performed equivalently to that of Equation 2. Let �̂�𝑔
̅̅̅ denote the average expression 

estimate of gene 𝑔 in pseudobulk profiles �̂� and 𝑧𝑔̅̅̅ the average expression of this gene in all bulk 

RNA-seq profiles—including the matching and other bulk RNA-seq and profiles 𝑍, and let 𝜎�̂� and 𝜎𝑔 

denote their respective standard deviations. Then the transformed profile for gene 𝑔 in sample 𝑖 (𝑧𝑔,𝑖) 

is given in Equation 3. This formulation does not require concurrent RNA-seq and scnRNA-seq 

profiling. 

𝑧𝑔,𝑖 = �̂�𝑔
̅̅̅ +

𝜎�̂�

𝜎𝑔
(𝑧𝑔,𝑖 − 𝑧𝑔̅̅̅)    Equation 3  

Following transformation using Equations 2 or 3, Janus adopts a simplification of DWLS’s strategy 

to deconvolve transformed bulk profiles. Janus doesn’t require signature gene selections, and 

instead uses all genes with nonzero expression in both the transformed bulk and scnRNA-seq 

profiles. The objective function is identical to the one employed by OLS (Equation 1), however, here, 

the Janus process seeks to identify �̃�𝑖𝑗 ∈ �̃� that minimizes the discrepancy between transformed 

bulk RNA-seq profiles 𝑍 and the abundance-weighted sums of the expression profiles of composing 

cell types 𝑋. Consequently, following the iterative process proposed by Tsoucas et al., Janus 

minimizes this dampened weighted discrepancy until convergence is reached at iteration 𝑙, so that 

‖�̃�(𝑙) − �̃�(𝑙−1)‖ ≤ 0.01.(Tsoucas et al., 2019). 
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Performance evaluation of deconvolution methods 

DWLS consistently outperformed other deconvolution methods in our tests. However, its accuracy 

was poor in several datasets, limiting its potential applications. Note that lower accuracy may be due 

to method-independent factors, including physically different cellular compositions between 

scnRNA-Seq and bulk RNA-Seq samples, and technical differences in sample processing that 

results in diverging estimates. Most importantly, deconvolution accuracy is dependent on accurate 

gene expression estimates, and—as is the case for our cell mixtures—scnRNA-Seq-derived gene 

expression profiles may be imprecise. We showed that OLS-based deconvolution using bulk RNA-

Seq profiles of each cell type (Figure 9G) produced more accurate results than deconvolution using 

scRNA-seq-derived profiles (Figure 9H). Similarly, deconvolution with DWLS using bulk RNA-Seq 

profiles of each cell type was in excellent agreement with mixture composition as estimated by cell 

counts (Figure 11A), and its performance declined when using scRNA-seq-derived profiles (Figure 

11B). However, in both cases, deconvolution with DWLS was more accurate than OLS: r=0.98 vs. 

r=0.95 when using bulk RNA-Seq profiles, and r=0.93 vs. r=0.78 when using scRNA-seq-derived 

profiles, respectively. However, deconvolution with Janus—employing linear bulk RNA-Seq 

transformation followed by dampened weighted least squares—further improved deconvolution 

accuracy (r=0.95, Figure 11C). 

To systematically test the benefit of bulk transformation and deconvolution with Janus, we compared 

the performance of Janus, DWLS, and OLS on our cell mixture set, paediatric AML, FAC2004 NB 

(NB1), Jansky NB (NB2), ROSEMAP brain, breast cancer, and kidney profiles using a leave-one-

out cross-validation strategy. Namely, iteratively, concurrent RNA-Seq and scnRNA-Seq profiles of 

all but one of the samples were used to predict the composition of the remaining sample based on 

its bulk RNA-seq profile (Figure 11D). We compared composition estimates by the three 

deconvolution prediction methods and estimates based on cell counts (for cell mixtures) or from 

scnRNA-Seq (all other samples), denoting both their Pearson correlation and RMSE. Our results 

demonstrated consistently and significantly improved prediction accuracy with Janus, resulting in 

improved correlations and reduced error for each sample tested.  
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Figure 11: Mixture deconvolution with transformed RNA-seq data. (A) DWLS deconvolved the 
composition of our mixtures with near-perfect accuracy when given the bulk RNA-seq expression profiles 
of each cell type (r=0.98), and (B) with high accuracy when using cell-type expression estimates from 
scRNA-cluster profiles (r=0.93). (C) Bulk RNA-seq transformation significantly improved DWLS 
deconvolution accuracy when using cell-type expression estimates from scRNA-cluster profiles (r=0.95, 
p<2E-4). (D) We compared the accuracy of predicted composition estimates by OLS, DWLS, and DWLS 
following bulk RNA-seq transformation on datasets with concurrent bulk and scRNA or snRNA 
expression profiling, using Pearson correlation and RMSE. 
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Chapter 4 Chemoresistant AML subclones 

Children with acute myeloid leukemia (AML) are not benefiting from advances in personalized 
treatment and immunotherapy because there are few known disease-driving mutations and AML-
specific antigens for targeting. Most children with AML are still treated with traditional chemotherapy 
and often stem cell transplant which carries a large risk of toxicity, and still 40% of children will fail 
this approach and die of relapse (Gamis et al., 2014; Rubnitz et al., 2010). The relapsed disease is 
often attributed to a subset of cells that withstand chemotherapy and eventually resurge. Clinically, 
this phenomenon manifests as “measurable residual disease” (MRD), which refers to residual AML 
cells detected in the bone marrow after chemotherapy. About 30% of paediatric AML patients have 
MRD detected by flow cytometry after one cycle of treatment, and this finding is strongly associated 
with future relapse (Loken et al., 2012).  

Intrinsic and extrinsic survival mechanisms contribute to MRD. For example, AML cells that survive 
cytarabine treatment demonstrate distinct intrinsic metabolic dependencies (Farge, Boyd, 
Konopleva), as well as environment-induced anti-apoptosis gene and protein expression profiles. 
Equally important to surviving drug toxicity is escaping immune surveillance. Several mechanisms 
by which AML cells evade immune cell eradication have been described, including checkpoint 
protein expression and immunosuppressive cytokine secretion. T cells, NK cells and monocytes in 
the AML bone marrow niche all demonstrate a loss of anti-AML reactivity. Understanding the intrinsic 
and extrinsic mechanisms that allow an AML cell to survive chemotherapy and immune eradication 
will pave the way for new rational therapies to counter these mechanisms.  

We postulated that individual AML cases contain subpopulations with enhanced chemoresistance 
and immune evasion capacity and that these cells can often be detected as MRD after the first cycle 
of chemotherapy. We have constructed regulatory interaction graphs based on public RNA-Seq data, 
and have used several high-dimensional approaches, including CITE-seq and single-cell RNA-seq, 
to compare AML subpopulations between diagnosis and relapse. We have identified surface markers 
and gene expression programs that are enriched in subpopulations that expand between diagnosis 
and relapse, suggesting they represent potential targets for eradicating chemoresistant AML. We 
applied our biological and computational expertise to analyze end-induction bone marrow samples 
by CITE-seq. Distinguishing a rare population of malignant myeloid cells from recovering normal 
stem and progenitor cells at the single-cell level can be challenging, but if successful it would be 
immensely informative.   

In total, we profiled paired diagnostics samples before treatment and at relapse for 6 patients; pre-
treatment AML samples are enriched for chemosensitive cancer cells, while relapse AML samples 
are enriched for chemoresistant cancer cells(Rasche et al., 2018). We then used cell types and 
expression profiles from these scRNA-Seq data to deconvolve diagnostic samples from a total of 
181 paediatric AML (Bolouri et al., 2018) patients that were profiled by the TARGET consortium. 
Paired diagnostic-relapse paediatric AML samples were collected with the objective to identify 
chemoresistant tumor subclones. After integration and clustering (Figure 12A), we sought to identify 
AML subclones (clusters) that are present before treatment and expand at relapse. One AML cluster 
was the only predicted AML subclone that included diagnostic and relapse cells from at least half of 
the patients and expanded at relapse. We refer to this subclone as the AML expanding subclone, or 
AML-X for short (Figure 12B). We used Janus, DWLS, and CIBERSORT to predict the composition 
of TARGET AML samples, and then used the predicted abundance of AML-X cells in each diagnostic 
sample for survival analysis. Abundance estimates by DWLS and CIBERSORT were not predictive 
of outcomes, however, estimates by Janus suggested that diagnostic samples whose composition 
included at least 5.8% AML-X cells had significantly worse outcomes (p=1.90E-3, Figure 12C). Janus 
composition estimates were also the only ones that were predictive of survival by Cox regression 
(p=6E-4, compared to p=0.07 using DWLS). Note that in the 3 scRNA-Seq profiled samples with 
AML-X cells, 10%-11% of AML cells were identified as AML-X cells at diagnosis. The most 
upregulated genes in AML-X were MALAT1, NEAT1, and ZEB2 (Figure 12D). The long noncoding 
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RNAs NEAT1 and MALAT1 colocalize in Chr11Q13.1, are co-expressed in AML, and are predicted 
to transcriptionally co-inhibit hundreds of genes(Chiu et al., 2018; Lorenzi et al., 2021). Their 
common targets were significantly downregulated in AML-X (Figure 12E). Moreover, NEAT1 has 
been previously implicated with chemoresistance in cancer (Adriaens et al., 2016), and both NEAT1 
and MALAT1 have been associated with poor prognosis in childhood leukemia (Pouyanrad et al., 
2019). In addition, MALAT1 has been shown to post-transcriptionally upregulate ZEB2 in cancer 
(Cheng et al., 2021; Xiao et al., 2015); ZEB2 was the third most upregulated gene in AML-X. In its 
totality, this evidence suggests that lncRNAs, including NEAT1 and MALAT1 may play key roles in 
regulating chemoresistance in paediatric AML. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Analysis of 6 paired diagnosis-relapse scRNA-Seq Paediatric AML samples. (A) The 
integration of the 12 samples revealed a combination of AML and normal cell types, including AML-X, 
which contained AML cells from both the diagnostic and relapse samples of AML patients TCH4, TCH5, 
and TCH6. (B) The proportion of AML-X cancer cells was higher in the relapse samples of TCH4, TCH5, 
and TCH6 than in the corresponding diagnostic samples. (C) Janus predicted AML-X cell abundance in 
RNA-Seq profiles of diagnostic TARGET AML samples was predictive of outcomes; note that abundance 
estimates by other methods were not predictive. (D) Upregulated genes in AML-X cells included NEAT1, 
MALAT1, and ZEB2. (E) BigHorn-predicted targets of NEAT1 and MALAT1 were significantly enriched 
for downregulated genes in AML-X cells. 
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Chapter 5 Outcomes-predictive neuroblastoma (NB) 

subclones 

We produced concurrent bulk RNA-Seq and scRNA-Seq NB profiles to evaluate deconvolution 
methods and to identify NB subclones that are predictive of outcomes. The NB dataset included 
scRNA-Seq profiles of 14 NB samples (Jansky et al., 2021). We used cell types and expression 
profiles from these scRNA-Seq data to deconvolve diagnostic samples from a total of 161 NB (Pugh 
et al., 2013) patients that were profiled by the TARGET consortium. In total, 15 NB subclones were 
identified (Figure 13A), and each one was tested for outcomes predictions based on abundance 
estimates by Janus, DWLS, CIBERSORT using TARGET RNA-Seq data. In total, two subclones 
were identified to be predictive of outcomes using Janus abundance estimates (Figure 13, NB-s1 
and NB-s2 at p=1.4E-3 and p=1.0E-2, respectively). No cluster was predictive of outcomes using 
DWLS or CIBERSORT. Interestingly both subclones showed enrichment for upregulated MYC and 
RAS signalling pathway genes, as well as upregulation of semaphore genes. MYC is a key driver in 
NB, and the RAS pathway (Eleveld et al., 2015; Pugh et al., 2013) and semaphore genes (Delloye-
Bourgeois et al., 2017) have been previously implicated in poor prognosis for NB patients. In 
addition, MALAT1 was identified as upregulated in NB-s1 cells, and its targets were significantly 
inhibited, similarly to what was observed for chemoresistant AML. 

In total, our analysis suggests that bulk RNA-Seq deconvolution with Janus can help identify drivers 
of poor prognosis in AML. Our work suggested that a predictive panel based on MYC and RAS 
signalling pathways could help classify NB patients at diagnosis. 

 

 

 

Figure 13: (A) Analysis of concurrent RNA-Seq and scRNA-Seq profiles of 14 NB identified 15 NB 
subclones including NB-s1 and NB-S2 (B) whose abundance was predictive of outcomes in TARGET 
samples that were profiled by RNA-Seq. (C) Significantly upregulated genes in cells included 
semaphores, HRAS (NB-s1), and MYC targets.  
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Chapter 6 Summary and Conclusion 

We set out to develop technologies to identify cell subpopulations in each tumour type, associate 
them with responses to therapies, and use these data to predict therapeutic responses. During the 
past 3 years, iPC has developed technologies to address all these challenges. Here we report on 
the use of these technologies to identify chemoresistant cancer cells that are associated with relapse 
and metastases in HB, paediatric AML, and NB. These success stories produce a framework to 
predict and evaluate therapies for paediatric cancer based on the composition of tumors at diagnosis. 
We envision that this framework could be expanded to these and other cancer types in the immediate 
future.  
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