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Sarcoma is a rare and complex disease comprising over 80 malignant subtypes

that is frequently characterized by poor prognosis. Challenges in clinical

management include uncertainties in diagnosis and disease classification,

limited prognostic and predictive biomarkers, incompletely understood disease

heterogeneity among and within subtypes, lack of effective treatment options,

and limited progress in identifying new drug targets and novel therapeutics.

Proteomics refers to the study of the entire complement of proteins expressed in

specific cells or tissues. Advances in proteomics have included the development

of quantitative mass spectrometry (MS)-based technologies which enable

analysis of large numbers of proteins with relatively high throughput, enabling

proteomics to be studied on a scale that has not previously been possible.

Cellular function is determined by the levels of various proteins and their

interactions, so proteomics offers the possibility of new insights into cancer

biology. Sarcoma proteomics therefore has the potential to address some of the

key current challenges described above, but it is still in its infancy. This review

covers key quantitative proteomic sarcoma studies with findings that pertain to

clinical utility. Proteomic methodologies that have been applied to human

sarcoma research are briefly described, including recent advances in MS-based

proteomic technology. We highlight studies that illustrate how proteomics may

aid diagnosis and improve disease classification by distinguishing sarcoma

histologies and identify distinct profiles within histological subtypes which may

aid understanding of disease heterogeneity. We also review studies where

proteomics has been applied to identify prognostic, predictive and therapeutic

biomarkers. These studies traverse a range of histological subtypes including

chordoma, Ewing sarcoma, gastrointestinal stromal tumors, leiomyosarcoma,

liposarcoma, malignant peripheral nerve sheath tumors, myxofibrosarcoma,

rhabdomyosarcoma, synovial sarcoma, osteosarcoma, and undifferentiated

pleomorphic sarcoma. Critical questions and unmet needs in sarcoma which

can potentially be addressed with proteomics are outlined.
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1 Background

Sarcomas are rare mesenchymal malignancies of bone and soft

tissue that are frequently characterized by poor prognosis (1). They

account for approximately 1% of adult malignancies and up to 15% of

childhood cancers (1–3). There are more than 80 histological

subtypes of sarcoma and approximately 20% of all sarcomas are

defined as ‘ultra-rare’with an incidence of less than 1 in 1,000,000 (4).

The heterogeneity of sarcomas and the rarity of many subtypes makes

their study difficult, and their clinical management challenging.

Classification of sarcomas is complicated not only by the

heterogeneity in histological findings among subtypes, but also

within subtypes. Many sarcomas, such as leiomyosarcoma (LMS)

or undifferentiated pleomorphic sarcoma (UPS), do not have

definitive diagnostic markers. Several sarcomas are characterized

by unique molecular findings, which can be diagnostic, however the

equipment and expertise to conduct the molecular tests required are

not routinely available in many laboratories (5, 6). The challenge of

histopathological diagnosis in sarcoma is exemplified in studies

where sarcoma pathology has been subjected to expert second

review, with major discrepancies in histological subtype diagnosis

being identified in up to 25% of cases (6, 7).

Sarcomas can have a wide variety of clinical presentations and

outcomes, although many subtypes are associated with aggressive

natural histories and poor prognosis. Despite optimal resection and

the use of neo-adjuvant and adjuvant therapies, localized soft tissue

and bone sarcomas demonstrate high rates of distant relapse (8–10),

and the clinical trial evidence that neo-adjuvant or adjuvant

chemotherapy reduces the risk of relapse of soft tissue sarcoma

(STS) is inconclusive (11–13). It is currently not possible to predict

with sufficient accuracy which individuals are at greatest risk of

relapse and need more intensive or different therapies. The

prognosis of advanced disease is typically poor, with median

survival less than two years in most STS and bone sarcomas even

in adolescents and young adults (14–17). Systemic treatment

options in advanced disease are limited, with low response rates

and short-duration responses (14, 18–20).

Prognostic biomarkers currently in routine clinical use are

largely clinico-pathological. Examples include degree of

histological necrosis in osteosarcoma (21), and clinicopathological

nomograms in rhabdomyosarcoma (RMS) and other STS that

include primary lesion size, grade and histological subtype (8, 22–

25). Genomic biomarkers, including ‘CINSARC’ which is a

validated prognostic 67-gene expression signature for clinical

outcome in sarcoma, have been developed but have not been

integrated into routine clinical practice to date (26–28). There are

a limited number of predictive biomarkers in routine clinical use in

soft tissue or bone sarcoma. In RMS, negative prognostic

clinicopathological variables classifying patients as ‘high risk’ were

found to be predictive of benefit from maintenance chemotherapy

with vinorelbine and cyclophosphamide (29). Prognostic

clinicopathological biomarkers, however, have not been shown to

be predictive of adjuvant treatment efficacy in STS clinical trials nor

has histological necrosis in osteosarcoma for maintenance or

intensified post-operative therapy (10, 30).
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This review describes the current and potential contribution of

studying proteins in sarcoma. The utility of studying the expression of

specific proteins has been firmly established in oncology, but for a

limited number of applications. Positive immunohistochemical protein

expression, for example, plays a key role in the diagnostic work up of

sarcomas. The absence of cytokeratin staining can help to differentiate

sarcomas from carcinomas and expression of endothelial marker CD31

is used to identify vascular soft tissue tumors (31). Expression of

myogenic proteins desmin, MYOD1 and myogenin define RMS and

are used to differentiate RMS from other round cell tumors (32).

Protein-based tumor markers, such as carcinoembryonic antigen in

colorectal cancer, are used for disease monitoring and proteins may

guide anti-cancer treatment (33). Altered mismatch repair protein

expression, for example, may predict response to immunotherapy (34,

35). Proteins also form the target that many molecularly targeted

cancer drugs interact with. Examples in sarcoma include anaplastic

lymphoma kinase (ALK) receptor inhibition with crizotinib in ALK-

rearranged inflammatory myofibroblastic tumors and platelet-derived

growth factor receptor alpha (PDGFRA) and KIT receptor inhibition

in gastrointestinal stromal tumors (GIST) with a panel of agents

including imatinib, sunitinib, regorafenib, ripretinib and avapretinib

(36–42). Multi-tyrosine kinase inhibitors such as cediranib, pazopanib,

and cabozantinib, which inhibit multiple receptors including vascular

endothelial growth factor (VEGF) receptors, have demonstrated

clinical efficacy in alveolar soft part sarcoma, non-lipogenic STS, and

bone sarcomas respectively (20, 43, 44).

Proteomics refers to the study of all detectable proteins expressed

in specific cells or tissues: their abundance, activity and interactions.

Proteins play a key role in the functioning of all cells and tissues

including cancers. Proteomics has the potential to improve

understanding of the biology and disease behavior of sarcoma as an

entity and of sarcoma subtypes, and identify prognostic and predictive

biomarkers of disease outcomes including treatment response that

could better inform treatment decisions and improve survival of

patients with sarcoma. Proteomics could also inform therapeutic

target discovery and development of novel therapeutics for localized

and advanced disease.

Proteins represent the dynamic downstream products of the

more than 20,000 genes comprising the genome following DNA

transcription, RNA translation and post translational modifications.

Genomic findings alone have not fully accounted for the

complexities of cancer biology. Because protein expression levels

have the potential to provide a more functional and dynamic

account of cellular behavior, proteomics has the potential to

substantially increase understanding of the cancer phenotype

(45). This may be particularly important for the many sarcoma

subtypes that have few driver mutations but extensive copy number

variation which is likely to result in complex alterations in protein

expression levels (46–48). Multi-omic analyses show imperfect

correlation of RNA and proteomic findings (49–52), which

implies that proteomics may identify novel information that has

not been revealed through genomic or transcriptomic research to

date. An illustration of the consequences of this for individual

patients is a case of chondrosarcoma where CDK4 gene

amplification was identified by RNA sequencing and a CDK4/6
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inhibitor was commenced according to the recommendation of a

molecular tumor board (53). No response was seen, however, which

appears to be explained by proteomic data showing that proteins

involved in cell cycle regulation were not upregulated.

Although there have been major improvements in proteomic

technology in recent decades, it has not progressed at the same rate

as for genomics. Proteomic studies of cancer biology are at relatively

early stage, and there are very few examples of its application in

routine clinical oncology (54). Many proteomic studies in sarcoma

have involved cohorts of small size or analysis with limited

proteomic depth. Recent advances, however, have resulted in MS-

based technologies which are able to detect a substantial proportion

of the cancer proteome with relatively high sample throughput,

including use of formalin-fixed paraffin-embedded (FFPE) cancer

tissues collected as part of routine clinical care (55–57). These newer

technologies enable the proteomes of fresh, frozen or FFPE tumor

material to be analyzed in a short, clinically-applicable time frame

on a large scale (57, 58), which could facilitate rapid translation of

discoveries from cancer proteomics studies into clinical practice. In

addition to proteome-wide studies, MS-based technologies also can

be used for measurement of individual proteins and small panels of

proteins relevant for clinical decision making, using techniques

such as Multiple Reaction Monitoring (MRM) assays, which could

be adopted into clinical practice.

The primary aim of this review is to describe key quantitative

proteomic sarcoma studies with positive findings that pertain to

clinical utility. First, we briefly define proteomic techniques that have

been used in human sarcoma research, including recent advances in

MS-based proteomic technology. We review studies that illustrate

how proteomics may aid diagnosis and improve disease classification

by distinguishing sarcoma histologies and identify distinct profiles

within histological subtypes which may aid understanding of disease

heterogeneity. We also review proteomic studies where proteomics

has been applied to identify prognostic, predictive and therapeutic

biomarkers, and specifically those that have utilized human tumor

tissue and where findings have been clinically correlated. Cell line

studies have been included where findings have been validated in

clinically annotated human specimens or are accompanied by

patient-derived xenografts. To conclude, we outline questions and

unmet needs in sarcoma which can potentially be addressed with

proteomics and propose future approaches to proteomic research.
2 Approaches to proteomics
in sarcoma

Methods to identify and measure proteins can be divided into

those that do or do not involve MS. Of the many available

techniques, only those that have been used in human sarcoma

research are described here.
2.1 Proteomic techniques not involving MS

Proteomic techniques not requiring MS that have been used in

sarcoma research include gel electrophoresis and antibody-based
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techniques such as immunohistochemistry (IHC), western blotting,

and protein microarrays. Antibody based proteomic research is

limited by antibody-related issues, including reproducibility of

antibody batches and specificity of epitope recognition in the

protein of interest, requirement for prior knowledge of proteins

of interest, and availability of validated antibodies (59).

Gel electrophoresis involves separation of proteins in a semisolid

matrix based on mass and charge (60). Two-dimensional difference

gel electrophoresis (2D DIGE) is the technique most frequently cited

in sarcoma research. In this, protein samples are labelled with

fluorescent dyes, mixed together, and separated on a gel across two

dimensions. Dye-specific wavelengths are then detected to reveal

different protein spots between samples. 2D DIGE is frequently

combined with MS to identify proteins of interest. Here, proteins

are separated using gel electrophoresis, selected protein spots are

enzymatically digested into peptides, then analyzed with MS. Several

thousand different proteins can be identified with gel electrophoresis,

however gel-based techniques can be time-consuming and labor-

intensive which presents a barrier to large-scale analysis.

Underrepresentation of proteins is also a limitation (45).

Western blotting is a technique that allows identification of

proteins of interest among a mixture of proteins (61). After proteins

have been extracted from the tissue and separated in one dimension by

gel electrophoresis, they are transferred (i.e., “blotted”) from the gel

onto a membrane which is incubated with antibodies against the

protein of interest. The bound antibodies are visualized and quantitated

by methods such as immunostaining or immunofluorescence.

IHC, which is widely used in research and clinical practice,

entails staining tissue sections on slides using antibodies to identify

protein antigens, and a reagent coupled to the antibody that

produces a stain (color reaction) to indicate the antigen’s location

within the slide and its relative quantity via the staining intensity

(62). IHC of FFPE tissue has been utilized in combination with

quantitative proteomic techniques, or in integrative analyses, to

validate findings.

Protein microarrays include reverse-phase protein arrays

(RPPA) and antibody arrays. Either multiple tissue samples

(RPPA), or a range of protein targeted antibodies (antibody

arrays), are immobilized onto a microarray surface (63). These

can then be incubated with an antibody or a tissue, respectively, to

analyses hundreds of tissues samples or quantify proteins

simultaneously. Analysis with protein arrays can thus be high-

throughput, however study of more than few hundred proteins is

generally not feasible.
2.2 MS-based proteomics

MS is a technique where proteins can be identified and quantified

through analysis over time of the mass to charge (m/z) ratio of

ionized peptides and of ionized fragments of those peptides (45, 55,

64). Tissue samples are prepared by lysis and enzymatic digestion of

the released proteins to produce a peptide mixture that is fractionated

over time by liquid chromatography (LC). Peptides from the LC

gradient are injected into the mass spectrometers following ionization

by techniques such as electrospray ionization (ESI) or matrix assisted
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https://doi.org/10.3389/fonc.2023.1126736
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Connolly et al. 10.3389/fonc.2023.1126736
laser desorption/ionization (MALDI). Within mass spectrometers,

m/z ratios of precursor ions are first determined (MS1). Precursor

ions are primarily the ionized digested peptides and are selected and

fragmented in a collision cell then the m/z of the product ions

generated from collision is determined (MS2). The product ions are

ionized fragments of the peptides and provide partial amino acid

sequence information. The combination of the precursor and product

ion m/z is the key part of identifying the parent protein. Protein

quantification can be achieved through label-free or isobaric labelling

techniques. The latter approaches include tandem mass tagging

(TMT) or isobaric tags for relative and absolute quantitation

(iTRAQ). Label-free approaches include accurate monitoring of the

intensity of detection of each peptide over LC elution time or can be

approximated by counting the frequency in which the precursor ions

are detected (spectral counting). Proteins are subsequently identified

through analysis of peptide data with approaches including data

dependent acquisition (DDA), which is often combined with isobaric

labelling, or data independent acquisition (DIA). DIA techniques

such as sequential window acquisition of all theoretical fragment ion

spectra mass spectrometry (SWATH-MS), mostly require the

generation of spectral reference libraries to interpret the mass

spectrum generated without the need for chemical labels on the

peptides. This procedure can detect thousands of proteins with

relative quantitation from digested complex samples of multiple

types (45, 55, 64). Advances in sample preparation techniques,

instrumentation, and bioinformatics, have made it possible to

conduct large-scale, reproducible, unbiased, proteomic discovery

research (58). The main processes of a label-free MS-based

proteomic workflow are illustrated in Figure 1.
3 Quantitative proteomic studies
in sarcoma

Quantitative proteomic analyses in sarcoma are limited to date

with less than 100 studies reported in the literature. Studies
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encompass broad analyses across multiple histological subtypes,

and subtype-specific analyses. Sarcoma subtypes studied include

GIST, osteosarcoma, chordoma, Ewing sarcoma, and various STS

including RMS. There is a paucity of studies of the less common and

ultra-rare sarcoma subtypes. Research has predominantly been

conducted on frozen tissue samples and cell lines, with FFPE

samples largely only used for IHC analyses until recently. Large

quantitative proteomic analyses in sarcoma are limited in number

with few dedicated proteomic studies; most large proteomic

analyses feature as a component of multi-omic integrative

molecular studies.

We have identified 23 key quantitative proteomic sarcoma

studies with positive findings that pertain to clinical utility

(Table 1). These studies encompassed histopathological subtypes

of bone and STS, with potential clinical application for diagnosis,

molecular subtyping, prognostication, and identification of novel

therapeutic biomarkers and targets. Twenty of 23 studies

incorporated MS-based techniques. The cohort sizes varied widely

from less than 10 to almost 1000. Samples were from FFPE blocks (2

studies), frozen tissue (17 studies), cell lines (3 studies), or patient

derived xenograft (1 study).
3.1 Distinguish sarcoma histological
subtypes and aid diagnosis

Diagnosing sarcoma subtypes by histopathology is frequently

difficult and many subtypes do not have definitive diagnostic

markers (6, 7). Quantitative analyses of larger cohorts suggests

that some sarcoma subtypes may possess unique proteomic profiles.

This is of clinical interest given these signatures could be

independently diagnostic, or enable differentiation from other

sarcoma subtypes, and thus aid histological diagnosis.

Milighetti et al. (2021) examined 36 FFPE samples of localized

disease of four sarcoma subtypes using SWATH-MS proteomics

(67). Samples included 12 LMS, 10 UPS, 7 synovial sarcomas (SS)
FIGURE 1

General workflow for label-free MS-based proteomics. The arrows reflect the stages of the workflow. e.g. starts with samples.
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TABLE 1 Summary of quantitative proteomic sarcoma studies with potential clinical applications.

Study Sarcoma
subtype

Proteomic
technique

Samples (n) Sample
type

Depth of
coverage

Diagnostic
biomarkers

Molecular
subgroups
within

subtypes

Prognostic
biomarkers

Therapeutic
targets and
biomarkers

Multi-subtype

Goncalves
(2022) (65)

>40 all type
cancer
malignancies;
bone sarcoma,
STS

MS 949 including
40, 22

Cell line 8498 proteins
-

Zhang
(2021) (66)

8 STS subtypes RPPA 218 Frozen 220 proteins

Milighetti
(2021) (67)

LMS, SS, UPS,
DDLPS

MS 36 FFPE 2951 proteins

TCGA
(2017) (68)

LMS, DDLPS,
UPS, MFS, SS,
MPNST

RPPA
173 Frozen 192 proteins

Lou (2016)
(69)

OS, MFS, UPS,
LMS

MS 52 Frozen 20 diagnostic-,
9 survival-
related proteins

Kirik (2014)
(70)

STS mixed,
LMS, UPS

2D DIGE
MS

85, 38,16
0, 15, 5

Frozen
Frozen

837 spots
778 proteins

Yang (2010)
(71)

LMS, GIST RPPA 31, 38 Frozen 7 proteins

Soft Tissue Sarcoma

Toulmonde
(2020) (72)

UPS MS 25 FFPE 3512 proteins

Stewart
(2018) (73)

RMS MS
-

12 O-PDX,
myoblasts,
myotubules

16,523 proteins
12,653
phosphosites

Bone Sarcoma

Chaiyawat
(2019) (74)

Osteosarcoma 2D DIGE
MS

4 + 4 soft
tissue callus

Frozen 329 spots
34 proteins

Cheng
(2017) (75)

Osteosarcoma MS 2
osteosarcoma,
1 osteoblast

Cell line 1549 proteins

Kubota
(2013) (76)

Osteosarcoma 2D DIGE
MS

13
-

Frozen 3494 spots
27 proteins

Kikuta
(2010) (77)

Osteosarcoma 2D DIGE
MS

12
-

Frozen 2250 spots
38 proteins

Hang (2022)
(78)

Chordoma MS 9 Frozen 5089 proteins
21,826
phosphosites

Shen (2021)
(79)

Chordoma MS 17 Frozen 4286 proteins

Zhou (2010)
(80)

Chordoma 2D DIGE
MS

6
-

Frozen
-

18 spots*
19 proteins

Kikuta
(2009) (81)

Ewing sarcoma 2D DIGE
MS

8
-

Frozen
-

2364 spots
66 proteins

Gastrointestinal Stromal Tumor

Liu (2019)
(82)

GIST MS 13 Frozen 9177 proteins

Atay (2018)
(83)

GIST MS
Western
blot

12
17

Cell line
Plasma

1606 proteins
30+ proteins

(Continued)
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and 7 dedifferentiated liposarcoma (DDLPS) from various

anatomical sites. The group quantified 2951 proteins across all

cases and found 277 proteins to be significantly upregulated across

the four histotypes. They demonstrated the sarcoma subtypes to

have unique proteomic identities through three-dimensional t-

Distributed Stochastic Neighbor Embedding (3D-tSNE) plot

visualization where separation of the four distinct histological

subtypes was seen. In hierarchical clustering, LMS and SS

demonstrated distinct separation from other samples. Two

groups, containing a mixture of UPS and DDLPS, also emerged.

It is of relevance to note these defining signatures were maintained

across anatomical sites. Differentially expressed proteins and

networks were assessed for each subtype. For LMS and SS, 95 and

103 proteins respectively were significantly upregulated. In contrast

to LMS and SS, in UPS and DDLPS, differential expression analysis

revealed only 29 and 13 proteins respectively to be significantly

upregulated. This study demonstrates sarcoma subtypes can possess

unique proteomic profiles and thus the potential utility of

proteomics for disease classification. It is of interest that some

subtypes appear to possess more distinct proteomic profiles as

reflected by higher numbers of differentially expressed proteins.

This may mean that distinguishing some sarcoma subtypes through

proteomic profiling may be more feasible than others. Alternatively,

larger sample sizes may be required to identify defining profiles for

more heterogeneous subtypes.

The finding of LMS and SS possessing distinct profiles was

shared by The Cancer Genome Atlas (TCGA) consortium’s multi-

omic integrative analysis (2017) which examined 173 frozen

sarcoma specimens using RPPA-based proteomic analysis (68).

Six histological subtypes were analyzed including 60 LMS, 46

DDLPS, 41 UPS, 15 myxofibrosarcoma (MFS), 6 SS and 5

malignant peripheral nerve sheath tumors (MPNST).

Unsupervised consensus clustering of RPPA data with 192

antibodies identified five proteomic clusters with a statistically

significant association with histologic type. Clustering of most

LMS cases together was seen (cluster 1 included 48 of 53 LMS
Frontiers in Oncology 06
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the remaining groups. SS, which were limited in number (n=6)

relative to other subtypes, did not form a distinct cluster, although

all but one case (5 of 6 cases) appeared to fall into a single cluster C3

of mixed subtype. Pathway analysis of proteomic clusters identified

an association of the LMS-enriched proteomic cluster with lower

inferred activity of the apoptosis pathway, higher estrogen and

progesterone receptor levels, and higher PI3K/AKT pathway

activity relative to other clusters. In integrative analysis, both LMS

and SS were found to be distinct from other sarcomas. LMS

dominated a single multi-platform cluster (iCluster c1, 64 of 65

cases LMS) although SS was reported to be the most distinct

sarcoma across all platforms with relatively uniform and unique

patterns of DNA methylation, miRNA expression, and

gene expression.

Lou et al. (2016) uniquely examined a cohort of bone and STS

samples to evaluate if proteomics could identify diagnostic markers.

Four proteins were identified which showed differential expression

in LMS relative to MFS (69). MALDI-MS imaging (MALDI-MSI)

was used to examine 52 fresh frozen LMS, UPS, MFS and high-

grade osteosarcoma samples. Protein signals were considered

diagnostic if they showed significant intensity differences specific

to a single tumor type. Twenty protein signals were identified from

well differentiated regions of LMS (n=4), MFS (n=9) and OS (n=9).

Four proteins were identified from these protein signals through

comparison with published reference library datasets: Acyl-CoA-

binding protein, thioredoxin, macrophage migration inhibitory

factor and galectin-1, all of which were highly expressed in LMS

and showed low expression in MFS.
3.2 Identification of distinct profiles within
histologic subtypes

Within sarcoma subtypes, there is heterogeneity in natural

history and treatment response, suggesting there may be
TABLE 1 Continued

Study Sarcoma
subtype

Proteomic
technique

Samples (n) Sample
type

Depth of
coverage

Diagnostic
biomarkers

Molecular
subgroups
within

subtypes

Prognostic
biomarkers

Therapeutic
targets and
biomarkers

Ichikawa
(2015) (84)

GIST MS 8 Frozen 2550 proteins

Kikuta
(2012) (85)

GIST 2D DIGE
MS

17**
-

Frozen
-

3260 spots
25 proteins

Da Riva
(2011) (86)

GIST 1D PAGE
MS

16 Frozen Not reported
39 proteins

Suehara
(2008) (87)

GIST 2D DIGE
MS

17**
-

Frozen 1513 spots
25 proteins
*differentially expressed proteins between groups, total protein spots not reported.
**same samples of primary GIST tumors.
1D PAGE, 1D polyacrylamide gel electrophoresis; 2D DIGE, 2D directional gel electrophoresis; DDLPS, dedifferentiated liposarcoma; FFPE, Formalin fixed paraffin embedded tissue; GIST,
gastrointestinal stromal tumor; LMS, leiomyosarcoma; MFS, myxofibrosarcoma; MPNST, malignant peripheral nerve sheath tumor; O-PDX, orthotopic patient-derived xenograft; OS,
osteosarcoma; RMS, rhabdomyosarcoma; MS, mass spectrometry; RPPA, reverse phase protein array; SS, synovial sarcoma; STS, soft tissue sarcoma; UPS, undifferentiated pleomorphic sarcoma.
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subgroups within histological subtypes. Identification of distinct

proteomic profiles within histologic subtypes may help explain

these differences, and in turn could assist in prognostication and

treatment selection. Several proteomic studies have searched for

subgroupings within individual subtypes that correlate with clinical

outcomes, some of which have suggested subgroupings that cross

subtype boundaries.

3.2.1 Undifferentiated pleomorphic sarcoma
and liposarcoma

UPS, as its name suggests, is a poorly differentiated tumor of

unclear origin. It does not possess definitive diagnostic markers and

subtype diagnosis is through exclusion of others. There is emerging

proteomic evidence for molecular subgroups within UPS and

potential shared biology with some liposarcomas. Subgrouping

within UPS would be of considerable interest given its perceived

heterogeneous nature and with emerging evidence for

immunotherapy efficacy in UPS. It is estimated 20-30% of UPS

respond to immunotherapy and it is currently not possible to

predict which patients will respond (88, 89).

Toulmonde et al. (2020) undertook a comprehensive multi-

omic analysis of UPS and demonstrated two main subgroups with

distinct immunological and clinical features and therapeutic

sensitivities (72). Their work incorporated protein analyses (MS,

IHC and western blot), RNA and whole exome sequencing, and

radiomics. The authors also generated cell lines and orthotopic

patient derived xenograft (O-PDX) models from some of the

tumors for functional studies. Proteomic analysis of 25 UPS

samples with DIA LC-MS identified 3215 proteins. Unsupervised

consensus and hierarchical clustering identified three groups

(designated PA, PB, and PC) with 565 proteins differentially

expressed between groups PA and PB (fold change ≥2, p 0.01).

Gene set enrichment analysis revealed 19 pathways that were

differentially expressed in the PA and PB groups. Upregulation of

immune response pathways was noted in the PB group

(consequently classified as immune high) and epithelial

mesenchymal transition (EMT) and MYC target pathways in the

PA group (immune low). Toulmonde at al. completed

transcriptomic analysis of the same samples and unsupervised

consensus and hierarchical clustering of this revealed three gene

clusters (72). One group (group A) was enriched in genes involved

in normal development, stemness and oncogenesis, and another

(group B) in immune based genes. They found immune infiltrate

IHC patterns (M2 macrophage density, and expression of IDO1,

CD8 and PD-1) to be highly predictive of the gene expression

classification and consequently termed the groups ‘immune low’

(group A), ‘immune high’ (group B) and ‘other’ (group C, n=4).

They report high concordance between the proteomic and RNA

clusterings (precision 82%) and good correlation of 114 related

protein/gene pairs that were differentially expressed in both groups

in each analysis (analysis of agreement, Spearman = 0.56, Pearson =

0.57, regression slope = 0.73). Additional findings included a 9-

feature radiomic signature, through analyzing 14 pre-treatment

MRIs, that could discriminate the ‘immune-high’ UPS from other

UPS (specificity 100% (7/7), sensitivity 86% (6/7) accuracy of 93%
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(13/14)) and selective FGFR activity in immune low UPS, in cell

lines and PDX models.

The concept of proteomic and immune-related molecular

subgroupings is supported by Lazcano et al. (2022), who

undertook an IHC immune marker study to assess the immune

landscape of UPS (90). Through unsupervised clustering, the

authors identified three immunologically distinct subgroups,

termed ‘immune high, intermediate and low’ respectively, with

different survival outcomes.

The hypothesis that some DDLPS share biology with a subgroup

of UPS is supported by the Milighetti et al. MS-based study and the

TCGA RPPA study. In the study by Milighetti et al. (2021) who

performed hierarchical clustering of 36 FFPE samples of four sarcoma

subtypes, UPS and DDLPS fell into two clusters, with clusters 2 and 4

both containing a mix of both subtypes (67). In the TCGA RPPA

study (2017), which included 173 specimens of which 87 were

DDLPS and UPS, although not commented upon by the authors,

the majority of UPS cases fell into two RPPA clusters C2 and C5 (46).

For DDLPS, approximately half of the cases appear to fall into shared

RPPA cluster C5, which was comprised almost entirely of UPS and

DDLPS, and the other DDLPS cases fell into other groups. In the

integrated analysis, similar findings were observed where both

subtypes fell into two clusters and included a shared cluster C3.

UPS appear to cluster into two integrated clusters, C3 and C5, and

DDLPS appear to fall into clusters C2 and C3.

These studies collectively suggest the hypothesis that despite the

heterogeneous nature of UPS, most will fall into identifiable

molecular subgroups, of which one may have an immune basis.

Additionally, some UPS may have shared biological features with

some DDLPS tumors.

3.2.2 Rhabdomyosarcoma
RMS has traditionally been classified into several subtypes based

on histopathological features. Subtypes include embryonal (ERMS),

alveolar (ARMS), spindle cell and sclerosing RMS, and pleomorphic

RMS (91). This classification has been questioned with discovery of

genomic findings that appeared to better predict prognosis. ARMS

were traditionally understood to follow a more aggressive trajectory

and be associated with inferior prognosis compared to ERMS.

Approximately 60% of ARMS have a PAX3-FOXO1 fusion gene

and fusion-negative ARMS were subsequently shown to have a

similar prognosis to ERMS. Consequently, a complex risk

stratification system of clinicopathological and genomic variables

associated with prognosis, including FOXO1 gene fusion status, has

recently been adopted to guide treatment for RMS. There is,

therefore, great potential for proteomics to deconvolute the

interplay of histological and genomic findings.

Stewart et al. (2018) conducted a multi-omic analysis of RMS,

which included quantitative proteomic analysis, and demonstrated

differing proteomic profiles of ARMS, ERMS and RMS precursor cells

(73). Their work also included genomic, epigenomic, and

phosphoproteomic analyses with the aim of elucidating cellular

origins and therapeutic vulnerabilities. Proteomic analysis with

isobaric labelled TMT LC-MS was undertaken on myoblasts,

myotubes and O-PDX RMS samples. PDX models were derived
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from recurrent RMS tumors and samples included 8 embryonal RMS

(ERMS), and 4 alveolar RMS (ARMS). The authors identified 16,523

proteins and 12,653 phosphosites. Proteomic principal component

analysis demonstrated separation of ERMS, ARMS, and myotubes

and myoblasts. Differential expression analysis revealed differential

expression of proteinsMYOG andMYF5 between ERMS and ARMS.

For 17 RMS tumors and their matched PDX there was agreement

between IHC staining, gene expression and proteomic data for MYF5

and MYOG. Despite the small sample size, this study suggests that

histopathological subgroups in RMS can be distinguished with

proteomics and that exploring larger cohorts of tumors annotated

with genomic fusion status and clinical outcomes using quantitative

proteomic technology may increase our understanding of RMS and

potentially assist in refining RMS classification.

3.2.3 Leiomyosarcoma
LMS is one of the most common STS subtypes and one in which

the underlying molecular biology has been studied more extensively

than other sarcoma subtypes. The finding of two or more molecular

subgroups in LMS has been suggested in several genomic,

transcriptomic, and integrative studies (92–95). One proteomic

study has suggested there may be three proteomic subgroups (70).

Kirik et al. (2014) analyzed 139 mixed subtype STS samples by

2D DIGE followed by TMT-based ESI-MS/MS analysis of 15 LMS

and 5 myogenic UPS frozen tissue samples (70). The samples used

for MS analysis were chosen on the basis of hierarchical clustering

of the 2D DIGE results. Through MS analysis, 778 proteins were

quantified and principal component analysis identified three LMS-

enriched groups (LMS-A, -B and -C) and one UPS-enriched group.

Three proteins (vinculin, COL6A3 and MYH11) were identified to

be able to discriminate among the four groups. Unsupervised

clustering showed group LMS-A appeared more distinct from

tumors in groups LMS-B and LMS-C. Differential pathway

analysis among the three LMS groups indicated apoptosis,

cytoskeleton remodelling, and telomere regulation to be

differentially regulated among these subgroups. An additional

finding was an association of three ‘significantly deregulated’

proteins (vinculin, Integrin-linked protein kinase (ILK) and

Creatinine Kinase type B) to be associated with vascular invasion,

a negative prognostic factor in STS, although it was noted that a

strong conclusion could not be drawn on account of the small

sample size with only four cases with vascular invasion.
3.3 Prognostic proteomic biomarkers

Prognostic and predictive biomarkers have important clinical

applications to identify patients with cancer at highest risk of relapse,

to tailor treatment, and guide surveillance intensity. Several studies

have endeavoured to identify prognostic proteomic biomarkers for

sarcomas utilizing a range of proteomic techniques.
3.3.1 Gastrointestinal stromal tumor
GIST is the sarcoma subtype that has been most extensively

studied with respect to proteomic prognostic markers. GIST is the
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(GI) tract (96). Primary disease predominantly arises in the

stomach and small intestine, in 60-65% and 20-35% of cases

respectively, although it may arise anywhere along the GI tract.

The genomic landscape of GIST has been well characterized and

GIST may be classified as KIT-mutated (67%), PDGFR-mutated

(16%) or GIST without KIT or PDGFR mutations (16-17%) in

which other alterations are recognized including NF1, SDH, BRAF

or NTRK gene alterations. Molecular findings in GIST are known to

correlate with variations in prognosis and therapeutic sensitivities.

GIST with KIT exon 11 deletions on codons 557 and 558, for

example, have much higher risk of relapse than others (97). Clinico-

pathological features identified to be associated with distant

recurrence of localized disease include tumor size, site, mitotic

index and tumor rupture (96). Proteomic analyses, across GISTs of

different sites and risk groups, propose several potential prognostic

markers which include pfetin, ATP-dependent RNA helicase

DDX39 (DDX39), promyelocytic leukaemia protein (PML), and

protein tyrosine phosphatase nonreceptor type 1 (PTPN1) (82, 84,

85, 87).

Suehara et al. (2008) used 2D DIGE and MS to assess for

prognostic biomarkers in 17 GIST which were classified into good-

and poor-prognosis groups (87). Eight cases were classified as good

prognosis (G-GIST) who had no evidence of metastases two years

following surgery and ‘low to intermediate’ risk histopathology.

Nine cases were defined as poor prognosis (P-GIST) who had

metastases at diagnoses, or developed metastases within one year

of resection, and ‘high risk’ histopathological findings. Forty-three

protein spots, corresponding to 25 gene products, were found to

differ between the two groups. Potassium channel protein pfetin

was identified as a potential biomarker of favorable prognosis.

Pfetin IHC was performed in a series of 210 cases and positive

expression was found to be associated with superior 5-year

metastasis-free survival (93.9% versus 36.2% for pfetin-positive

and pfetin-negative cases respectively). Strong correlation between

pfetin expression and established prognostic clinicopathological

variables in GIST was seen in both uni- and multi-variate

analyses. Pfetin was determined to be an independent prognostic

risk factor among variables including risk classification and c-KIT

and PDGFR mutational status. When high- and low-risk GIST

groups were examined individually, pfetin-positivity conferred

superior prognosis in both groups. The authors validated their

prognostic findings with IHC in multiple independent cohorts (98,

99). Cumulatively, a total of 371 patients were assessed with IHC

and, in meta-analysis, metastasis-free survival was 93.8% and 40.6%

in pfetin-positive and -negative GIST, respectively.

Kikuta et al. (2012) examined differential protein expression of

the same group of 17 GIST cases with a larger format gel

electrophoresis device (85). Using 2D DIGE, 3260 protein spots

were identified of which 38 protein spot intensities differed between

P-GIST and G-GIST groups. These were analyzed with LC-MS and

identified to correspond with 25 gene products. They contrasted

their findings with those of their previous study and observed four

shared proteins in both studies (pfetin, DDX39, superoxide

dismutase and actin). DDX39 was selected for further evaluation

with IHC in a cohort of 72 GIST patients. The function of DDX39 is
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unconfirmed although it has been reported to be a novel growth-

associated RNA-helicase and to be required for global genome

integrity and telomere maintenance. An association of inferior

disease-free survival rates with strong DDX39 expression was

observed (50.38% versus 90.2% for cases with DDX39-strong and

DDX39-weak expression respectively). In a multi-variate analysis,

which included clinical and pathological risk factors, DDX39 was

determined to be an independent prognostic risk factor of disease-

free survival. The prognostic value was then assessed in

clinicopathological risk groups. A statistically significant

difference in the survival was observed in low-risk group patients,

with DDX39-strong or -weak expression, but this was not observed

in intermediate- and high-risk patient groups.

Subsequent to these studies, MS has been used for GIST

biomarker discovery. Ichikawa et al. (2015) conducted an

integrated ESI-MS/MS proteomic and transcriptomic analysis in

eight GIST samples and identified positive expression of the tumour

suppressor PML protein to be associated with superior survival

outcomes (84). The proteomic profiles of four gastric and four

intestinal GISTs that had been surgically resected were compared.

Differential expression analysis revealed 54 proteins to differ

significantly between gastric and intestinal sites. Low expression

of PML was identified in intestinal GIST and validated through

PML IHC evaluation in a cohort 254 GIST cases. An association of

positive PML IHC expression with superior 5-year recurrence free

survival rates was reported (91.7% versus 60.1% for PML-positive

and -negative cases respectively).

Liu et al. (2019) have more recently used TMT-based MS (LC-

MS/MS) to comprehensively examine the proteomic profile of GIST

tissue and identified phosphatase PTPN1 as a potential prognostic

biomarker (82). Thirteen patients of different National Institute of

Health (NIH) risk groups were analyzed. The NIH consensus

classification stratifies GIST patients into four risk subgroups

based on tumor size and mitotic rate. The group quantified 9177

proteins of which 4930 proteins were observed in all GIST cases.

187 proteins were observed to be downregulated and 517 proteins to

be upregulated, including phosphatase PTPN1. To evaluate the

reliability of their proteomic approach, comparison among risk

groups of proteins in their dataset was made with well-known over-

expressed proteins in GIST. Changing patterns of protein

expression between groups were observed and consistent with

previous reports. As a previously undescribed finding in GIST,

although understood to be associated with metastases in other

malignancies, PTPN1 expression and its correlation with survival

outcomes was assessed with IHC in an extended cohort of 117

clinically annotated cases. Higher PTPN1 expression was observed

in NIH lower risk cases, relative to higher risk cases (p=0.037) and

associated with numerically lower rates of metastatic disease. The

proportions of metastatic cases in PTPN1-high, -intermediate and

-low expression were 0/25, 3/49 and 4/43 respectively.

3.3.2 Leiomyosarcoma
In LMS, RPPA-based analysis has been used to identify

prognostic protein biomarkers. In an early study by Yang et al.
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(2010), expression of an epithelial marker E-cadherin has been

observed to be associated with improved survival (71). In

combination with transcriptomic analysis, 31 LMS and 38 GIST

samples were analyzed by RPPA. Protein expression of E-cadherin

was not seen in GIST although it was identified in a subset of LMS

cases. Expression of additional epithelial markers in LMS were also

observed (epithelial membrane antigen, cytokeratin AE1/AE3 and

pan cytokeratin). These findings were confirmed with western

blotting, and IHC, and e-cadherin positive LMS (n=18) were

observed to have better total survival than LMS with no e-

cadherin expression (n=13). Transcriptomic analysis, of the same

group of patients, mirrored this finding with higher survival rates

noted in patients with elevated mRNA levels of epithelial markers

than patients with higher mRNA levels of mesenchymal cell

marker genes.

3.3.3 Chordoma
In bone sarcoma chordoma, Zhou et al. (2010) examined frozen

samples of primary disease tissue of six patients, using 2D DIGE

and MALDI-MS (80). Fourteen upregulated proteins and five

downregulated proteins were identified and proteins alpha

enolase (ENO1), pyruvate kinase M2 (PKM2) and gp96 were

chosen for further analysis. In paired tissue analyses, their

expression was noted to be greater in chordoma than in adjacent

normal tissues, and higher in recurrent cases than primary tumors.

The association of survival endpoints with IHC expression of these

proteins was subsequently assessed in a cohort of 37 patients. ENO1

and PKM2 were associated with disease-free survival in univariate

analysis however no proteins were found to be prognostic in multi-

variate analysis of disease-free survival nor univariate analysis of

overall survival.

In a later study, Shen et al. (2021) utilized LC-MS/MS to identify

the enzyme asparagine synthetase (ASNS) as a novel prognostic

biomarker of recurrence in chordoma of the skull base (79). Frozen

samples of 17 patients were analyzed and the proteomic findings of

nine cases who had short recurrence free survival (RFS) intervals

were compared with eight cases with long RFS intervals. In total,

4286 proteins were quantified across all patients with 146 and 112

proteins identified to be up- and down- regulated respectively in the

rapid-recurrence group. Pathway analysis of upregulated proteins

suggested alanine, aspartate and glutamate metabolism was a main

pathway in the rapid recurrence groups. ASNS, an enzyme which

catalyses the conversion of aspartic acid to asparagine, was selected

for prognostic evaluation based on literature review. In two cohorts

of 93 and 94 patients respectively, an association of shorter RFS

with high IHC expression of ASNS was found. In the training

cohort of 93 patients, a median RFS of 24.5 months was observed in

ASNS-high cases relative to 59.0 months in ASNS-low cases

(p=0.009) and ASNS was found to be an independent prognostic

factor in univariate and multivariate Cox regression analysis. In a

functional experiment to evaluate the impact ASNS in oncogenesis,

knockdown of ASNS in chordoma cells (UM-Chorl and MUG-

Chor1) by siRNA resulted in inhibition of cell growth, colony

formation, migration and invasion.
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3.3.4 Osteosarcoma
Cheng et al. (2017) identified proteins minichromosome

maintenance protein 2 (MCM2) and minichromosome

maintenance protein 3 (MCM3) through MS analysis of

osteosarcoma cell lines and demonstrated an association of

positive IHC expression with inferior tumor free- and overall-

survival in 129 tissue samples (75). The group performed

SWATH-MS analysis of one osteoblast and two osteosarcoma

cells lines to identify proteins associated with carcinogenesis. Of

1549 proteins quantified, 62 upregulated proteins and 87

downregulated proteins were identified in all osteosarcoma cell

lines compared to the osteoblast cell line. Functional screening was

conducted on nine chosen proteins and inhibition of proteins

MCM2 and MCM3 were found to reduce osteosarcoma cell

proliferation. Knockdown of MCM2 and MCM3 significantly

inhibited osteosarcoma growth in vitro and in vitro. To determine

the clinico-pathological significance of these two proteins, IHC

expression of MCM2 and MCM3 was assessed in 129 clinically

annotated FFPE tissue samples. Higher expression of MCM2 and

MCM3 was found to correlate with disease recurrence and both

proteins were found to be independent prognostic risk factors for

tumor free- and overall- survival.
3.3.5 Ewing sarcoma
Kikuta et al. (2009) used 2DDIGE andMS to search for prognostic

biomarkers in the biopsy samples of eight Ewing sarcoma patients (81).

Five samples were classified as poor-prognosis (deceased with disease

within two years of diagnosis) and three as good prognosis (alive with

no evidence of disease over three years from diagnosis). Using 2D

DIGE, 2364 protein spots were identified. Sixty-six protein spots,

corresponding to 53 gene products including the protein

nucleophosmin, were found to differ between good- and poor-

prognosis samples. Nucleophosmin was chosen for further evaluation

because it has been associated with carcinogenesis and tumor

progression in other malignancies. IHC validation and prognostic

assessment was undertaken in an independent cohort of 34 clinically

annotated cases. Nucleophosmin positivity was observed in 23 of 34

cases and associated with shorter overall survival in uni- and multi-

variate analyses.

3.3.6 Multi-subtype prognostic analyses
Lou et al. (2016) utilized MALDI-MS imaging (MALDI-MSI),

as described above in section 3.1, to determine if proteins could

differentiate clinically important outcomes including survival and

development of metastases (69). Protein signals associated with

overall survival were investigated within individual subtypes (LMS,

UPS, MFS and high-grade osteosarcoma) and a combined soft

tissue cohort which included the LMS, UPS and MFS cases. Nine

protein signals were identified. Assignable proteins (n=4), where

high intensity was associated with poor survival, included

proteasome activator complex subunit 1 (PSME1, in STS

patients), two histone H4 variants (in LMS patients) and

haemoglobin subunit beta (in MFS patients). All of these proteins

have previously been linked to cancer progression and

pathogenesis, including being involved in microvascular invasion
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and stromal activation. One unclassified protein signal (m/z 8093)

displayed a possible association with metastasis-free survival in UPS

patients (p-value of 0.03 in Kaplan–Meier analysis, p-value of 0.06

in multivariate analysis). IHC expression was performed on FFPE

samples from the same patients and validated that higher

expression of PSME1 was associated with poor prognosis. A novel

component of this analysis considered if intra-tumoral

heterogeneity may also impact prognosis. Samples were

histopathologically annotated to ascertain well-, moderately- and

un-differentiated regions. MALDI-MSI data of these regions within

samples were subsequently interrogated. This resulted in

identification of two additional proteins (cytochrome C oxidase

subunit 2 and unclassified protein signal m/z 6281). When

prognostic biomarker assessment was limited only to

undifferentiated regions, these proteins corresponded with poor

prognosis in LMS. They also assessed for proteomic subpopulations

within the differentiated regions. Through virtual microdissection,

two molecularly distinct subpopulations were identified within

moderately differentiated regions of osteosarcoma samples, that

were statistically associated with different overall survival.

More recently, Milighetti et al. (2021) used MS-based

proteomics, as described above in section 3.1, to identify a multi-

protein expression profile associated with shorter overall survival in

a subgroup of STS cases (67). Hierarchical clustering of 36 cases

based on the expression values of 133 proteins, selected with p <0.05

in univariable Cox regression analysis, revealed three subgroups of

mixed histological subtypes associated with significantly different

overall survival. Group 2 showed an inferior outcome and was

comprised of 3 DDLPS, 3 LMS and one UPS. The proteomic

subgroups remained an independent prognostic factor after

adjusting for other clinicopathological factors including age,

tumor size, grade, sex and histological subtypes in multivariable

Cox regression analysis.

A multi-subtype multi-protein prognostic risk signature has also

been generated from RPPA-based protein data. The Cancer Proteome

Atlas (TCPA) is an open-access resource of RRPA-based proteomics

data of many tumor subtypes (100). The TCPA have analyzed an

RPPA of 221 sarcomas comprising 8 different soft tissue subtypes with

220 antibodies. This public dataset has recently been interrogated by

Zhang et al. (2021) to reveal 55 proteins, from 218 samples, to be

associated with overall survival (66). Individual patient risk scores were

calculated, based on corresponding protein expression data multiplied

by the Cox regression coefficient. Dichotomised risk groups (high or

low risk) were then created based onmedian risk score. A risk signature

consisting of 7 proteins was independently associated with overall

survival after adjusting for clinicopathological parameters. Of note, the

prognostic utility of the signature in predicting overall survival within

some clinicopathologic subgroups (e.g., for LMS, UPS, both younger

and older age, both positive and negative margin status) but not others

(DDLPS, MFS). The signature was also associated with a worse

progression free interval (PFI) (p <0.0001), and a trend towards a

shorter disease free interval (DFI) (p=0.09) in high-risk patients.

The findings of many of these studies require validation with

independent cohorts and larger sample sizes for clinical application.

The demonstration of individual proteins and proteomic subgroups

being associated with survival, however, is supportive of the utility
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of proteomics for prognostic biomarker discovery. It is intriguing to

speculate that it may be possible to identify a subtype-agnostic

proteomic survival signature, as illustrated by Milighetti et al. MS-

based work and the study of TCPA RPPA data. (66, 67).
3.4 Proteomic therapeutic targets
and biomarkers

Given the established utility of proteins in oncology as

diagnostic markers, drug targets, and as tumor markers for

disease and therapeutic activity monitoring, it is anticipated that

proteomics could reveal novel therapeutic biomarkers and targets

in sarcoma.

3.4.1 Therapeutic targets
Hang et al. (2022) undertook proteomic and phosphoproteomic

analyses to identify pathway alterations and aberrant kinase activity in

chordoma (78). They demonstrated suppression of chordoma cell

growth in functional experiments of identified proteins. Four-

dimensional label-free LC-MS/MS analysis of frozen chordoma tissue

and paired normal muscle tissue from nine patients quantified 5089

proteins and 21,826 phosphosites from 4724 phosphorylated proteins.

Pathway analysis of proteins differentially expressed in chordoma tissue

revealed strong enrichment of oxidative phosphorylation. It is thought

that chordomas arise from the embryonic notochord and that theWnt-

signalling pathway plays a crucial role in embryonic and notochord

development. Ten of 100 known Wnt-signalling proteins were

observed to be differentially expressed including a two-fold elevation

of expression of b-catenin. Using an integrated computational

approach that enables prediction of kinase activities based on

differences in their substrate phosphorylation, 28 kinases with altered

activity were found. Significant differences between chordoma and

normal tissue were identified for three kinases: Aurora kinase A

(AURA), Cyclin-dependent kinase 9 (CDK9) and MAPK/MAK/

MRK overlapping kinase (MOK). Elevated expression of these

kinases was verified using western blotting of proteins from

chordoma and normal tissue of six chordoma patients independent

from the patients examined byMS. All three proteins were expressed in

tumor tissue, although some inconsistencies of AURA and CDK9 were

noted; expression was observed in normal tissue of some cases and

variable expression was seen in tumor samples. Knockdown of AURA,

MOK and CDK9 in chordoma cell lines and treatment with CDK9

inhibitor AZD4573 were shown to compromise cell proliferation in

functional experiments. The authors thus concluded these cell-

proliferation related proteins may promote chordoma oncogenesis

and may represent new therapeutic targets.

Stewart et al. (2018) used a multi-omic approach, described above

in section 4.2.2, to identify dysregulated pathways in RMS and target

these in preclinical models (73). To do this, they focused on

upregulated pathways elucidated in integrated analysis that also

demonstrated drug sensitivity in primary cultures of O-PDX models.

Analysis of 1,767 drug/tumor combinations in the PDX models

identified significant in vitro activity of a WEE1 kinase inhibitor,

AZD1775, which targets the unfolded protein response and G2/M
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checkpoint pathways. Epigenetic, gene expression and proteomic/

phosphoproteomic data for RMS relative to myoblasts revealed

upregulation of this pathway. Application of AZD1775 to cell lines

caused them to arrest in the G2/M phase of the cell cycle. When

combined with irinotecan or vincristine, these drugs caused high levels

of DNA damage. Pre-clinical placebo-controlled trials of AZD1775, as

a monotherapy and in combination with irinotecan and vincristine,

were then conducted in several O-PDX models. Overall survival was

not improved with AZD1775 monotherapy compared to placebo

although a compiled complete and partial response of 70% was seen

with triplet combination therapy (AZD1775, irinotecan and

vincristine). The authors conclude these findings suggest WEE1 may

be a therapeutic target in RMS, thereby illustrating how proteomics

may enable therapeutic discovery.

The utility of high-throughput quantitative proteomics for

therapeutic discovery is supported a pan-cancer analysis of 949

human cell lines by our group (2022), which included 62 bone and

soft tissue sarcoma cell lines (65). DIA MS-based analysis (SWATH-

MS) of more than 40 histological cancer types, across 28 tissue types,

quantified 8498 proteins. Integration of multi-omics, drug response,

and CRISPR-Cas9 gene essentiality screening revealed thousands of

protein biomarkers of cancer vulnerabilities. In bone sarcoma cell lines,

drug/protein associations included a strong association of protein

abundance of peptidyl-prolyl cis-trans isomerase H (PPIH) with

response to the Aurora kinase B/C selective inhibitor GSK1070916.

The study revealed thousands of protein biomarkers of cancer

vulnerabilities, including the example detailed, that were not

significant at the transcript level. Furthermore, the study also

demonstrated that the predictive power of the proteome to predict

drug response was overall very similar to that of the transcriptome.

The use of proteomics for therapeutic target discovery is in its

infancy, however these studies support its potential utility for therapeutic

discovery, and identification of novel therapeutic approaches.

3.4.2 Predictive biomarkers
Identification of predictive biomarkers of disease outcomes

including treatment response could better inform treatment

decisions and improve survival of patients with sarcoma. Several

studies, which are described below, have used cell lines and small

cohorts of frozen tissues (5-30 samples) to identify individual

proteins as biomarkers of treatment response.

In osteosarcoma, expression of peroxiredoxin 2 (PRDX2) and

78 kDa glucose-related protein (GRP78) have been reported to be

associated with poor treatment response (74, 76, 77). One group

performed two 2D DIGE studies to assess for proteomic biomarkers

of osteosarcoma response to neo-adjuvant chemotherapy (76, 77).

In both studies, which included 12 and 13 patients respectively, an

association of increased peroxiredoxin 2 (PRDX2) expression with

poor response to chemotherapy was reported. Frozen samples

which had been obtained prior to treatment were analyzed and

the proteomic findings of patients classified as good and poor

responders were compared. Patients were classified based on the

histological necrosis of their post-chemotherapy resection

specimens where good response was defined as histological

necrosis of greater than 90%. In the first study by Kikuta et al.
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(2010), 55 of 2250 identified protein spots, corresponding to 38

unique proteins, differed significantly between good and poor

responders (77). In the second study by Kubota et al. (2013), 33

of 3494 protein spots, corresponding to 27 proteins, differed

significantly between the two groups. MS was used to identify the

differential spots and PRDX2 was noted to be upregulated in poor-

responders in both studies. The chemotherapy regimens in each

study were different, therefore it was noted to be of interest that

upregulation of PRDX2 was identified in both studies. To

investigate the association of PRDX2 with response to

chemotherapy, Kubota et al. conducted experiments of siRNA-

induced silencing of PRDX2 in three osteosarcoma cell lines (76).

PRDX2 silencing resulted in increased sensitivity of osteosarcoma

cells to chemotherapy (methotrexate, doxorubicin and cisplatin)

and a decrease in cell proliferation, invasion and migration in

functional assays. The authors propose PRDX2 may therefore

represent a predictive biomarker and an indicator of

chemotherapy resistance.

Chaiyawat et al. (2019) used 2D DIGE and LC-MS/MS to

identify GRP78 to be differentially expressed in osteosarcoma

when four frozen tissue osteosarcoma samples and four normal

soft tissue callus samples were compared (74). In a separate

validation cohort, an association of upregulation of GRP78 with

poor treatment response was reported.

In GIST, positive expression of Stem Cell Growth Factor

(SCGF) has been associated with response to the tyrosine kinase

inhibitor imatinib (86), and exosomal expression of proteins

Sprouty homolog 4 (SPRY4) and tyrosine protein kinase KIT

have been associated with increased risk of tumor progression

(83). Da Riva et al. (2011) examined resection samples of 16

GIST patients including 15 tumor samples that had been exposed

to neo-adjuvant imatinib treatment and one treatment naïve sample

(86). Cases were classified according to histological response in

terms of percentage of viable cells and defined as high-, moderate-

and non-responders. Gel electrophoresis, western blotting and

MALDI-MS analysis of five samples, including three high-

responders, identified haemopoietic growth factor SCGF

expression in imatinib-responsive GIST tumors and its absence in

some non-responding tumors. It was noted results were not

consistent across all cases. IHC analysis of five cases showed

SCGF to be restricted to the stromal compartment. Inflammatory

infiltrates were detected in some imatinib-affected areas and the

authors hypothesized an inflammatory reaction induced by

imatinib treatment might be responsible for the SCGF positivity.

Experiments revealed SCGF positivity in GIST marker KIT

(CD117)-negative and CD68 (a marker of monocytic cells)-

positive areas. The authors proposed that identification of SCGF

may be consistent with an imatinib-induced inflammatory response

but acknowledged further studies are necessary to determine the

reason for its expression.

Atay et al. (2018) reported GIST-derived exosomal SPRY4 and

KIT expression as biomarkers of disease status and imatinib

response (83). LC-MS/MS was used to analyze GIST-derived

exosomes from two GIST cell lines, GIST-T1 and GIST882.
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Exosomal proteins were quantified (n=1060) and a selection of

proteins were validated using cell lines, patient-derived KIT+

exosomes and GIST tissues. Enrichment of multiple established

GIST-associated protein markers was observed, including KIT,

CD34, anoctamin-1 (ANO1), hypoxia inducible factor 1 alpha

(HIF1a), and succinate dehydrogenase B (SDHB). Enrichment of

protein SPRY4 was also observed which the group had previously

identified as a genetic marker that could predict imatinib response

(101). To explore the therapeutic value of proteins identified,

immunoblot expression of SPRY4 and KIT was compared in

paired pre- and post- imatinib plasma samples, with findings of

reduced levels of SPRY4 and KIT post-imatinib in patients classified

to be imatinib-responsive and higher levels in patients classified to

be imatinib-resistant (83). Quantitative analysis of circulating

exomes of the plasma of ten primary GIST and seven metastatic

GIST revealed significantly increased levels of KIT and SPRY4 in

metastatic patients. In imatinib-responsive primary GIST patients,

both KIT and SPRY4 were significantly reduced. In imatinib-treated

metastatic patients, only KIT was significantly elevated. To further

verify their findings, IHC was performed in GIST patient tissue with

a finding of significant expression of SPRY4 in metastatic GIST

cases (n=7) compared with resected primary GIST cases (n=8). The

authors conclude that expression of SPRY4 and KIT may represent

markers of tumor progression and could be predictive of imatinib

therapeutic response.
4 Outstanding questions and
future approaches

The studies outlined here highlight the potential utility of

quantitative proteomics for the study and clinical management of

sarcomas. Detailed proteomic analyses are currently limited in scale

and the proteomes of many sarcoma subtypes remain largely

unexplored. The extensive clinicopathological heterogeneity

among the large number of sarcoma subtypes makes the lack of

large-scale studies especially problematic.

There are many questions and unmet needs in sarcoma which

can potentially be addressed with proteomics. These are

summarized in Table 2 and encompass biomarker discovery and

improving diagnosis, disease classification, risk stratification, and

treatment. The scope for future research with the emerging

proteomic technologies is therefore very large.

Multi-subtype studies and subtype-specific analyses are both

needed. These will enable exploration and definition of the

proteomic profiles of multiple different histological subtypes and

allow investigation of similarities and differences across the

spectrum of sarcoma. New molecularly-defined subtypes that may

provide an improved basis for classifying and treating sarcoma

could potentially emerge. Dedicated subtype-specific analyses

would be of value to study the proteome of unexplored less

common and ultra-rare sarcoma subtypes. For all subtypes,

analysis of large cohorts would facilitate investigation of
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underlying biology, disease mechanisms, and molecular subgroups

within sarcoma subtypes. Clinical annotation would help unravel

the potential relevance of molecular subgroups. Discovery of

diagnostic, prognostic and therapeutic biomarkers, would be of

profound interest and could be explored in both subtype-specific

analyses and multi-subtype studies.

Understanding disease biology will be the first step in

transformative proteomic research. For maximum clinical impact,

studies would consist of clinically annotated cohorts of large size,

designed around clinical questions addressing unmet needs in

sarcoma and including integrative multi-omic analysis

incorporating both genomics and proteomics. Incorporation of

phosphoproteomics and kinomics (also called chemoproteomics)

may also be important, particularly for discovery of new therapeutic

targets, because post translation modifications such as

phosphorylation may have a major impact on protein function

and many protein kinases are readily druggable (102–104).

Studying disease at multiple time points from pre-malignant

lesions to diagnosis to advanced disease, will help elucidate

mechanisms of carcinogenesis, disease relapse, progression, and

treatment resistance.

Challenges to conducting future research will be accruing

sarcoma cohorts that are clinically annotated and of sufficient
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size, with timely validation of findings in independent cohorts.

For translation of predictive and therapeutic biomarkers into

clinical practice, validation in large, prospective clinical trials will

likely be required. Proteomic challenges include technological

limitations, such as identification of low abundant proteins, and

cross platform comparability and validation. If novel discoveries are

made, there will undoubtedly be clinical implementation challenges.

A recent review has discussed DIA-MS challenges for cancer in

more depth including barriers to clinical implementation and

strategies to overcome these (54). In particular, this review

highlights the critical importance of involving cancer clinicians in

study design, and of international collaboration and data sharing.
5 Conclusions

We have reviewed recent quantitative proteomic findings and

identified the potential for robust proteomic studies to address

unmet clinical needs in sarcoma. It is anticipated that large scale,

clinically annotated, integrated multi-omic analyses will facilitate

novel discoveries pertaining to sarcoma diagnosis, risk

stratification, and treatment, with the hope of improving

outcomes and treatment options for sarcoma patients.
TABLE 2 Unmet needs and questions in sarcoma that may be possible to address with proteomics.

Diagnosis • Identification of diagnostic biomarkers for subtypes that are challenging to classify or lack simple diagnostic markers e.g. UPS, LMS.
• Development of diagnostic tools requiring tissue samples of smaller size thereby minimizing the invasive nature of biopsy for patients.

This is with consideration that in some cases core biopsies are insufficient to confirm diagnosis in sarcoma or genomic testing cannot be completed
due to sample quality or available material.

• Development of alternatives to biopsy such as blood-based testing.
• Diagnostic tools of improved practicality, e.g. currently evaluation of multiple IHC stains, with or without FISH or gene panels, along with

histopathological examination are utilized to confirm diagnosis.

Disease
classification

Establishing
• Whether molecular subtypes should be considered separate entities or grouped together, e.g., round cell subtypes including CIC-rearranged and

BCOR-altered sarcoma.
• Whether histological subtype-agnostic molecular subtypes or classifications can be found which may better inform diagnosis, prognosis, and treatment.

Risk
stratification

• Identification of prognostic biomarkers of localized and advanced disease.
• Development of a more robust risk classification systems for localized disease to better inform treatment decisions

that could be applied to individual or multiple sarcoma subtypes.
either single biomarkers or multi-feature composite models combining clinicopathological and molecular features.

Disease
monitoring

• Identification of tumor markers in sarcoma for disease activity monitoring.
• Tumor markers could be of utility for surveillance of localized disease or as markers of therapeutic response for patients receiving treatment for

advanced disease.

Treatment • Identification of new drug targets and therapeutic strategies given treatment options in sarcoma are limited.
• Improving the drug target yield of molecular findings. Most genomic findings currently are not actionable and downstream pathways of drivers

remain to be elucidated.
• Identify markers of resistance to established therapeutic options in sarcoma.

Therapeutic
Biology

Improvement in biological understanding of
• The basis of chemo-sensitivity seen within sarcoma subtypes, e.g., Ewing sarcoma, osteosarcoma, RMS, myxoid liposarcoma, UPS, cutaneous

angiosarcoma.
• What underlies chemotherapy resistance seen within sarcoma subtypes, e.g., alveolar soft part sarcoma, clear cell sarcoma, chondrosarcoma.
• Biology and biomarkers of subtypes responsive to immunotherapy, e.g. ASPS, UPS, cutaneous angiosarcoma.

Predictive
Biomarkers

Biomarkers of
• Adjuvant chemotherapy efficacy (prognostic and predictive biomarkers).
• Advanced disease treatment therapeutic response to inform treatment choice and sequencing.

Identify those who preferentially respond, and underlying mechanisms, to standard treatment options, e.g., in STS: doxorubicin, gemcitabine/
docetaxel, and pazopanib.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1126736
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Connolly et al. 10.3389/fonc.2023.1126736
Author contributions

EC wrote the manuscript. PR, RR, PG, and LH reviewed and

edited the manuscript. All authors contributed to the article and

approved the submitted version.
Acknowledgments

Images were created with Biorender.com. Elizabeth A. Connolly

is supported by a philanthropic grant to Chris O’Brien Lifehouse.

ProCan is supported by the Australian Cancer Research

Foundation, Cancer Institute New South Wales (NSW) (2017/

TPG001, REG171150), NSW Ministry of Health (CMP-01), The

University of Sydney, Cancer Council NSW (IG 18-01), Ian Potter

Foundation, the Medical Research Futures Fund (MRFF-PD),

National Health and Medical Research Council (NHMRC) of

Australia European Union grant (GNT1170739, a companion

grant to support the European Commission’s Horizon 2020

Program, H2020-SC1-DTH-2018-1, ‘iPC – individualized

Paediatric Cure’ [ref. 826121]), and National Breast Cancer

Foundation (IIRS-18-164). Work at ProCan is done under the

auspices of a Memorandum of Understanding between Children’s
Frontiers in Oncology 14
Medical Research Institute and the U.S. National Cancer Institute’s

International Cancer Proteogenomics Consortium (ICPC), that

encourages cooperation among institutions and nations in

proteogenomic cancer research in which datasets are made

available to the public. LGH is supported by NHMRC

grant (GNT1196225).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References

1. WHO Classification of Tumours Editorial Board. Soft tissue and bone tumours.

In: WHO classification of tumours series, 5th ed, vol. 3. . Lyon (France: International
Agency for Research on Cancer (2020). Available at: https://tumourclassification.iarc.
who.int/chapters/33.

2. Farid M, Ngeow J. Sarcomas associated with genetic cancer predisposition syndromes:
a review. Oncologist. (2016) 21(8):1002–13. doi: 10.1634/theoncologist.2016-0079

3. Howlader NNA, Krapcho M, Miller D, Brest A, Yu M, Ruhl J, Tatalovich Z,
Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA eds. SEER cancer statistics review
1975-2018. Bethesda, MD: National Cancer Institute (2021). Available at: https://seer.
cancer.gov/csr/1975_2018/.

4. Stacchiotti S, Frezza AM, Blay JY, Baldini EH, Bonvalot S, Bovee J, et al. Ultra-rare
sarcomas: a consensus paper from the connective tissue oncology society community of
experts on the incidence threshold and the list of entities. Cancer. (2021) 127(16):2934–
42. doi: 10.1002/cncr.33618

5. Schaefer IM, Cote GM, Hornick JL. Contemporary sarcoma diagnosis, genetics,
and genomics. J Clin Oncol (2018) 36(2):101–10. doi: 10.1200/JCO.2017.74.9374

6. Ray-Coquard I, Montesco MC, Coindre JM, Dei Tos AP, Lurkin A, Ranchere-
Vince D, et al. Sarcoma: concordance between initial diagnosis and centralized expert
review in a population-based study within three European regions. Ann Oncol (2012)
23(9):2442–9. doi: 10.1093/annonc/mdr610

7. Arbiser ZK, Folpe AL, Weiss SW. Consultative (expert) second opinions in soft
tissue pathology. analysis of problem-prone diagnostic situations. Am J Clin Pathol
(2001) 116(4):473–6. doi: 10.1309/425H-NW4W-XC9A-005H

8. Callegaro D, Miceli R, Bonvalot S, Ferguson P, Strauss DC, Levy A, et al.
Development and external validation of two nomograms to predict overall survival
and occurrence of distant metastases in adults after surgical resection of localised soft-
tissue sarcomas of the extremities: a retrospective analysis. Lancet Oncol (2016) 17
(5):671–80. doi: 10.1016/S1470-2045(16)00010-3

9. Bramer JA, van Linge JH, Grimer RJ, Scholten RJ. Prognostic factors in localized
extremity osteosarcoma: a systematic review. Eur J Surg Oncol (2009) 35(10):1030–6.
doi: 10.1016/j.ejso.2009.01.011

10. Marina NM, Smeland S, Bielack SS, Bernstein M, Jovic G, Krailo MD, et al.
Comparison of MAPIE versus MAP in patients with a poor response to preoperative
chemotherapy for newly diagnosed high-grade osteosarcoma (EURAMOS-1): an open-
label, international, randomised controlled trial. Lancet Oncol (2016) 17(10):1396–408.
doi: 10.1016/S1470-2045(16)30214-5

11. Woll PJ, Reichardt P, Le Cesne A, Bonvalot S, Azzarelli A, Hoekstra HJ, et al.
Adjuvant chemotherapy with doxorubicin, ifosfamide, and lenograstim for resected
soft-tissue sarcoma (EORTC 62931): a multicentre randomised controlled trial. Lancet
Oncol (2012) 13(10):1045–54. doi: 10.1016/S1470-2045(12)70346-7

12. Gronchi A, Palmerini E, Quagliuolo V, Martin Broto J, Lopez Pousa A, Grignani
G, et al. Neoadjuvant chemotherapy in high-risk soft tissue sarcomas: final results of a
randomized trial from Italian (ISG), Spanish (GEIS), French (FSG), and polish (PSG)
sarcoma groups. J Clin Oncol (2020) 38(19):2178–86. doi: 10.1200/JCO.19.03289

13. Gronchi A, Stacchiotti S, Verderio P, Ferrari S, Martin Broto J, Lopez-Pousa A,
et al. Short, full-dose adjuvant chemotherapy (CT) in high-risk adult soft tissue
sarcomas (STS): long-term follow-up of a randomized clinical trial from the Italian
sarcoma group and the Spanish sarcoma group. Ann Oncol (2016) 27(12):2283–8. doi:
10.1093/annonc/mdw430

14. Seddon B, Strauss SJ, Whelan J, LeahyM,Woll PJ, Cowie F, et al. Gemcitabine and
docetaxel versus doxorubicin as first-line treatment in previously untreated advanced
unresectable or metastatic soft-tissue sarcomas (GeDDiS): a randomised controlled phase
3 trial. Lancet Oncol (2017) 18(10):1397–410. doi: 10.1016/S1470-2045(17)30622-8

15. Tap WD, Wagner AJ, Schoffski P, Martin-Broto J, Krarup-Hansen A, Ganjoo
KN, et al. Effect of doxorubicin plus olaratumab vs doxorubicin plus placebo on
survival in patients with advanced soft tissue sarcomas: the ANNOUNCE randomized
clinical trial. JAMA. (2020) 323(13):1266–76. doi: 10.1001/jama.2020.1707

16. Van Glabbeke M, van Oosterom AT, Oosterhuis JW, Mouridsen H, Crowther D,
Somers R, et al. Prognostic factors for the outcome of chemotherapy in advanced soft tissue
sarcoma: an analysis of 2,185 patients treated with anthracycline-containing first-line
regimens–a European organization for research and treatment of cancer soft tissue and
bone sarcoma group study. J Clin Oncol (1999) 17(1):150–7. doi: 10.1200/JCO.1999.17.1.150

17. Younger E, Husson O, Asare B, Benson C, Judson I, Miah A, et al. Metastatic soft
tissue sarcomas in adolescents and young adults: a specialist center experience. J
Adolesc Young Adult Oncol (2020) 9(6):628–38. doi: 10.1089/jayao.2020.0010

18. Demetri GD, von Mehren M, Jones RL, Hensley ML, Schuetze SM, Staddon A,
et al. Efficacy and safety of trabectedin or dacarbazine for metastatic liposarcoma or
leiomyosarcoma after failure of conventional chemotherapy: results of a phase III
randomized multicenter clinical trial. J Clin Oncol (2016) 34(8):786–93. doi: 10.1200/
JCO.2015.62.4734

19. Judson I, Verweij J, Gelderblom H, Hartmann JT, Schoffski P, Blay JY, et al.
Doxorubicin alone versus intensified doxorubicin plus ifosfamide for first-line
treatment of advanced or metastatic soft-tissue sarcoma: a randomised controlled
phase 3 trial. Lancet Oncol (2014) 15(4):415–23. doi: 10.1016/S1470-2045(14)70063-4

20. van der Graaf WTA, Blay J-Y, Chawla SP, Kim D-W, Bui-Nguyen B, Casali PG,
et al. Pazopanib for metastatic soft-tissue sarcoma (PALETTE): a randomised, double-
frontiersin.org

https://tumourclassification.iarc.who.int/chapters/33
https://tumourclassification.iarc.who.int/chapters/33
https://doi.org/10.1634/theoncologist.2016-0079
https://seer.cancer.gov/csr/1975_2018/
https://seer.cancer.gov/csr/1975_2018/
https://doi.org/10.1002/cncr.33618
https://doi.org/10.1200/JCO.2017.74.9374
https://doi.org/10.1093/annonc/mdr610
https://doi.org/10.1309/425H-NW4W-XC9A-005H
https://doi.org/10.1016/S1470-2045(16)00010-3
https://doi.org/10.1016/j.ejso.2009.01.011
https://doi.org/10.1016/S1470-2045(16)30214-5
https://doi.org/10.1016/S1470-2045(12)70346-7
https://doi.org/10.1200/JCO.19.03289
https://doi.org/10.1093/annonc/mdw430
https://doi.org/10.1016/S1470-2045(17)30622-8
https://doi.org/10.1001/jama.2020.1707
https://doi.org/10.1200/JCO.1999.17.1.150
https://doi.org/10.1089/jayao.2020.0010
https://doi.org/10.1200/JCO.2015.62.4734
https://doi.org/10.1200/JCO.2015.62.4734
https://doi.org/10.1016/S1470-2045(14)70063-4
https://doi.org/10.3389/fonc.2023.1126736
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Connolly et al. 10.3389/fonc.2023.1126736
blind, placebo-controlled phase 3 trial. Lancet (2012) 379(9829):1879–86. doi: 10.1016/
S0140-6736(12)60651-5

21. Bielack SS, Kempf-Bielack B, Delling G, Exner GU, Flege S, Helmke K, et al.
Prognostic factors in high-grade osteosarcoma of the extremities or trunk: an analysis
of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group
protocols. J Clin Oncol (2002) 20(3):776–90. doi: 10.1200/JCO.2002.20.3.776

22. Chisholm JC, Marandet J, Rey A, Scopinaro M, de Toledo JS, Merks JH, et al.
Prognostic factors after relapse in nonmetastatic rhabdomyosarcoma: a nomogram to
better define patients who can be salvaged with further therapy. J Clin Oncol (2011) 29
(10):1319–25. doi: 10.1200/JCO.2010.32.1984

23. Pasquali S, Colombo C, Pizzamiglio S, Verderio P, Callegaro D, Stacchiotti S,
et al. High-risk soft tissue sarcomas treated with perioperative chemotherapy:
improving prognostic classification in a randomised clinical trial. Eur J Cancer.
(2018) 93:28–36. doi: 10.1016/j.ejca.2018.01.071

24. Pasquali S, Pizzamiglio S, Touati N, Litiere S, Marreaud S, Kasper B, et al. The
impact of chemotherapy on survival of patients with extremity and trunk wall soft
tissue sarcoma: revisiting the results of the EORTC-STBSG 62931 randomised trial. Eur
J Cancer. (2019) 109:51–60. doi: 10.1016/j.ejca.2018.12.009

25. Hindi N, Martin-Broto J. What is the standard indication of adjuvant or
neoadjuvant chemotherapy in localized soft-tissue sarcoma? Curr Opin Oncol (2021)
33(4):329–35. doi: 10.1097/CCO.0000000000000742

26. Brulard C, Chibon F. Robust gene expression signature is not merely a
significant p value. Eur J Cancer. (2013) 49(12):2771–3. doi: 10.1016/j.ejca.2013.03.033

27. Chibon F, Lagarde P, Salas S, Perot G, Brouste V, Tirode F, et al. Validated
prediction of clinical outcome in sarcomas and multiple types of cancer on the basis of a
gene expression signature related to genome complexity. Nat Med (2010) 16(7):781–7.
doi: 10.1038/nm.2174

28. Chibon F, Lesluyes T, Valentin T, Le Guellec S. CINSARC signature as a
prognostic marker for clinical outcome in sarcomas and beyond. Genes Chromosomes
Cancer. (2019) 58(2):124–9. doi: 10.1002/gcc.22703

29. Bisogno G, De Salvo GL, Bergeron C, Gallego Melcón S, Merks JH, Kelsey A,
et al. Vinorelbine and continuous low-dose cyclophosphamide as maintenance
chemotherapy in patients with high-risk rhabdomyosarcoma (RMS 2005): a
multicentre, open-label, randomised, phase 3 trial. Lancet Oncol (2019) 20(11):1566–
75. doi: 10.1016/S1470-2045(19)30617-5

30. Bielack SS, Smeland S, Whelan JS, Marina N, Jovic G, Hook JM, et al.
Methotrexate, doxorubicin, and cisplatin (MAP) plus maintenance pegylated
interferon Alfa-2b versus MAP alone in patients with resectable high-grade
osteosarcoma and good histologic response to preoperative MAP: first results of the
EURAMOS-1 good response randomized controlled trial. J Clin Oncol (2015) 33
(20):2279–87. doi: 10.1200/JCO.2014.60.0734

31. Miettinen M. Immunohistochemistry of soft tissue tumours - review with
emphasis on 10 markers. Histopathology. (2014) 64(1):101–18. doi: 10.1111/his.12298

32. Kumar S, Perlman E, Harris CA, Raffeld M, Tsokos M. Myogenin is a specific
marker for rhabdomyosarcoma: an immunohistochemical study in paraffin-embedded
tissues. Mod Pathol (2000) 13(9):988–93. doi: 10.1038/modpathol.3880179

33. GoldsteinMJ, Mitchell EP. Carcinoembryonic antigen in the staging and follow-up of
patients with colorectal cancer.Cancer Invest. (2005) 23(4):338–51. doi: 10.1081/CNV-58878

34. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1
blockade in tumors with mismatch-repair deficiency. N Engl J Med (2015) 372
(26):2509–20. doi: 10.1056/NEJMoa1500596

35. Cercek A, Lumish M, Sinopoli J, Weiss J, Shia J, Lamendola-Essel M, et al. PD-1
blockade in mismatch repair-deficient, locally advanced rectal cancer. N Engl J Med
(2022) 386(25):2363–76. doi: 10.1056/NEJMoa2201445

36. Blay JY, Serrano C, Heinrich MC, Zalcberg J, Bauer S, Gelderblom H, et al.
Ripretinib in patients with advanced gastrointestinal stromal tumours (INVICTUS): a
double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol (2020) 21
(7):923–34. doi: 10.1016/S1470-2045(20)30168-6

37. Schoffski P, Kubickova M, Wozniak A, Blay JY, Strauss SJ, Stacchiotti S, et al.
Long-term efficacy update of crizotinib in patients with advanced, inoperable
inflammatory myofibroblastic tumour from EORTC trial 90101 CREATE. Eur J
Cancer. (2021) 156:12–23. doi: 10.1016/j.ejca.2021.07.016

38. Demetri GD, von Mehren M, Blanke CD, Van den Abbeele AD, Eisenberg B,
Roberts PJ, et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal
stromal tumors. N Engl J Med (2002) 347(7):472–80. doi: 10.1056/NEJMoa020461

39. Demetri GD, Reichardt P, Kang YK, Blay JY, Rutkowski P, Gelderblom H, et al.
(2013) Efficacy and safety of regorafenib for advanced gastrointestinal stromal tumours
after failure of imatinib and sunitinib (GRID): an international, multicentre,
randomised, placebo-controlled, phase 3 trial. Lancet (2013) 381(9863):295–302. doi:
10.1016/S0140-6736(12)61857-1

40. Roubaud G, KindM, Coindre JM, Maki RG, Bui B, Italiano A. Clinical activity of
sorafenib in patients with advanced gastrointestinal stromal tumor bearing PDGFRA
exon 18 mutation: a case series. Ann Oncol (2012) 23(3):804–5. doi: 10.1093/annonc/
mdr631

41. Bauer S, Jones RL, Blay JY, Gelderblom H, George S, Schoffski P, et al. Ripretinib
versus sunitinib in patients with advanced gastrointestinal stromal tumor after
treatment with imatinib (INTRIGUE): a randomized, open-label, phase III trial. J
Clin Oncol (2022) 40(34):3918–28. doi: 10.1200/JCO.22.00294
Frontiers in Oncology 15
42. Jones RL, Serrano C, von Mehren M, George S, Heinrich MC, Kang YK, et al.
Avapritinib in unresectable or metastatic PDGFRA D842V-mutant gastrointestinal
stromal tumours: long-term efficacy and safety data from the NAVIGATOR phase I
trial. Eur J Cancer. (2021) 145:132–42. doi: 10.1016/j.ejca.2020.12.008

43. Judson I, Morden JP, Kilburn L, Leahy M, Benson C, Bhadri V, et al. Cediranib
in patients with alveolar soft-part sarcoma (CASPS): a double-blind, placebo-
controlled, randomised, phase 2 trial. Lancet Oncol (2019) 20(7):1023–34. doi:
10.1016/S1470-2045(19)30215-3

44. Italiano A, Mir O, Mathoulin-Pelissier S, Penel N, Piperno-Neumann S, Bompas
E, et al. Cabozantinib in patients with advanced Ewing sarcoma or osteosarcoma
(CABONE): a multicentre, single-arm, phase 2 trial. Lancet Oncol (2020) 21(3):446–55.
doi: 10.1016/S1470-2045(19)30825-3

45. Cho WCS. Proteomics technologies and challenges. Genomics Proteomics Bioinf
(2007) 5(2):77–85. doi: 10.1016/S1672-0229(07)60018-7

46. Network CGAR. Comprehensive and integrated genomic characterization of
adult soft tissue sarcomas. Cell. (2017) 171(4):950–65.e28.

47. Gounder MM, Agaram NP, Trabucco SE, Robinson V, Ferraro RA, Millis SZ,
et al. Clinical genomic profiling in the management of patients with soft tissue and bone
sarcoma. Nat Commun (2022) 13(1):3406. doi: 10.1038/s41467-022-30496-0

48. Nacev BA, Sanchez-Vega F, Smith SA, Antonescu CR, Rosenbaum E, Shi H,
et al. Clinical sequencing of soft tissue and bone sarcomas delineates diverse genomic
landscapes and potential therapeutic targets. Nat Commun (2022) 13(1):3405. doi:
10.1038/s41467-022-30453-x

49. Mertins P, Mani DR, Ruggles KV, Gillette MA, Clauser KR, Wang P, et al.
Proteogenomics connects somatic mutations to signalling in breast cancer. Nature.
(2016) 534(7605):55–62. doi: 10.1038/nature18003

50. Sinha A, Huang V, Livingstone J, Wang J, Fox NS, Kurganovs N, et al. The
proteogenomic landscape of curable prostate cancer. Cancer Cell (2019) 35(3):414–
27.e6. doi: 10.1016/j.ccell.2019.02.005

51. Zhang B, Wang J, Wang X, Zhu J, Liu Q, Shi Z, et al. Proteogenomic
characterization of human colon and rectal cancer. Nature. (2014) 513(7518):382–7.
doi: 10.1038/nature13438

52. Zhang H, Liu T, Zhang Z, Payne SH, Zhang B, McDermott JE, et al. Integrated
proteogenomic characterization of human high-grade serous ovarian cancer. Cell.
(2016) 166(3):755–65. doi: 10.1016/j.cell.2016.05.069

53. Wahjudi LW, Bernhardt S, Abnaof K, Horak P, Kreutzfeldt S, Heining C, et al.
Integrating proteomics into precision oncology. Int J Cancer. (2021) 148(6):1438–51.
doi: 10.1002/ijc.33301

54. Boys EL, Liu J, Robinson PJ, Reddel RR. Clinical applications of mass
spectrometry-based proteomics in cancer: where are we? Proteomics (2022) 23:
e2200238. doi: 10.1002/pmic.202200238

55. Zhang B, Whiteaker JR, Hoofnagle AN, Baird GS, Rodland KD, Paulovich AG.
Clinical potential of mass spectrometry-based proteogenomics. Nat Rev Clin Oncol
(2019) 16(4):256–68. doi: 10.1038/s41571-018-0135-7

56. Tully B, Balleine RL, Hains PG, Zhong Q, Reddel RR, Robinson PJ. Addressing
the challenges of high-throughput cancer tissue proteomics for clinical application:
ProCan. Proteomics (2019) 19(21-22):e1900109. doi: 10.1002/pmic.201900109

57. Macklin A, Khan S, Kislinger T. Recent advances in mass spectrometry based
clinical proteomics: applications to cancer research. Clin Proteomics. (2020) 17:17. doi:
10.1186/s12014-020-09283-w

58. Poulos RC, Hains PG, Shah R, Lucas N, Xavier D, Manda SS, et al. Strategies to
enable large-scale proteomics for reproducible research. Nat Commun (2020) 11
(1):3793. doi: 10.1038/s41467-020-17641-3

59. Bordeaux J, Welsh A, Agarwal S, Killiam E, Baquero M, Hanna J, et al. Antibody
validation. Biotechniques. (2010) 48(3):197–209. doi: 10.2144/000113382

60. Kondo T HS. Application of 2D-DIGE in cancer proteomics toward
personalized medicine. In: He K, editor. Reverse chemical genetics. methods in
molecular biology™. 577. Totowa, NJ: Humana Press (2009). p. 135–54.

61. Begum H, Murugesan P, Tangutur AD. Western Blotting: a powerful staple in
scientific and biomedical research. Biotechniques. (2022) 73(1):58–69. doi: 10.2144/btn-
2022-0003

62. Duraiyan J, Govindarajan R, Kaliyappan K, Palanisamy M. Applications of
immunohistochemistry. J Pharm Bioallied Sci (2012) 4(Suppl 2):S307–9.

63. Hall DA, Ptacek J, Snyder M. Protein microarray technology. Mech Ageing Dev
(2007) 128(1):161–7. doi: 10.1016/j.mad.2006.11.021

64. Ludwig C, Gillet L, Rosenberger G, Amon S, Collins BC, Aebersold R. Data-
independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial.
Mol Syst Biol (2018) 14(8):e8126. doi: 10.15252/msb.20178126

65. Goncalves E, Poulos RC, Cai Z, Barthorpe S, Manda SS, Lucas N, et al. Pan-
cancer proteomic map of 949 human cell lines. Cancer Cell (2022) 40(8):835–49.e8. doi:
10.1016/j.ccell.2022.06.010

66. Zhang B, Yang L, Wang X, Fu D. Identification of a survival-related signature for
sarcoma patients through integrated transcriptomic and proteomic profiling analyses.
Gene. (2021) 764:145105. doi: 10.1016/j.gene.2020.145105

67. Milighetti M, Krasny L, Lee ATJ, Morani G, Szecsei C, Chen Y, et al. Proteomic
profiling of soft tissue sarcomas with SWATH mass spectrometry. J Proteomics. (2021)
241:104236. doi: 10.1016/j.jprot.2021.104236
frontiersin.org

https://doi.org/10.1016/S0140-6736(12)60651-5
https://doi.org/10.1016/S0140-6736(12)60651-5
https://doi.org/10.1200/JCO.2002.20.3.776
https://doi.org/10.1200/JCO.2010.32.1984
https://doi.org/10.1016/j.ejca.2018.01.071
https://doi.org/10.1016/j.ejca.2018.12.009
https://doi.org/10.1097/CCO.0000000000000742
https://doi.org/10.1016/j.ejca.2013.03.033
https://doi.org/10.1038/nm.2174
https://doi.org/10.1002/gcc.22703
https://doi.org/10.1016/S1470-2045(19)30617-5
https://doi.org/10.1200/JCO.2014.60.0734
https://doi.org/10.1111/his.12298
https://doi.org/10.1038/modpathol.3880179
https://doi.org/10.1081/CNV-58878
https://doi.org/10.1056/NEJMoa1500596
https://doi.org/10.1056/NEJMoa2201445
https://doi.org/10.1016/S1470-2045(20)30168-6
https://doi.org/10.1016/j.ejca.2021.07.016
https://doi.org/10.1056/NEJMoa020461
https://doi.org/10.1016/S0140-6736(12)61857-1
https://doi.org/10.1093/annonc/mdr631
https://doi.org/10.1093/annonc/mdr631
https://doi.org/10.1200/JCO.22.00294
https://doi.org/10.1016/j.ejca.2020.12.008
https://doi.org/10.1016/S1470-2045(19)30215-3
https://doi.org/10.1016/S1470-2045(19)30825-3
https://doi.org/10.1016/S1672-0229(07)60018-7
https://doi.org/10.1038/s41467-022-30496-0
https://doi.org/10.1038/s41467-022-30453-x
https://doi.org/10.1038/nature18003
https://doi.org/10.1016/j.ccell.2019.02.005
https://doi.org/10.1038/nature13438
https://doi.org/10.1016/j.cell.2016.05.069
https://doi.org/10.1002/ijc.33301
https://doi.org/10.1002/pmic.202200238
https://doi.org/10.1038/s41571-018-0135-7
https://doi.org/10.1002/pmic.201900109
https://doi.org/10.1186/s12014-020-09283-w
https://doi.org/10.1038/s41467-020-17641-3
https://doi.org/10.2144/000113382
https://doi.org/10.2144/btn-2022-0003
https://doi.org/10.2144/btn-2022-0003
https://doi.org/10.1016/j.mad.2006.11.021
https://doi.org/10.15252/msb.20178126
https://doi.org/10.1016/j.ccell.2022.06.010
https://doi.org/10.1016/j.gene.2020.145105
https://doi.org/10.1016/j.jprot.2021.104236
https://doi.org/10.3389/fonc.2023.1126736
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Connolly et al. 10.3389/fonc.2023.1126736
68. Abeshouse A, Adebamowo C, Adebamowo SN, Akbani R, Akeredolu T, Ally A,
et al. Comprehensive and integrated genomic characterization of adult soft tissue
sarcomas. Cell. (2017) 171(4):950–65.e28. doi: 10.1016/j.cell.2017.10.014

69. Lou S, Balluff B, de Graaff MA, Cleven AH, Briaire-de Bruijn I, Bovee JV, et al. High-
grade sarcoma diagnosis and prognosis: biomarker discovery by mass spectrometry imaging.
Proteomics (2016) 16(11-12):1802–13. doi: 10.1002/pmic.201500514

70. Kirik U, Hansson K, KroghM, JonssonM, Nilbert M, James P, et al. Discovery-based
protein expression profiling identifies distinct subgroups and pathways in leiomyosarcomas.
Mol Cancer Res (2014) 12(12):1729–39. doi: 10.1158/1541-7786.MCR-14-0072

71. Yang J, Eddy JA, Pan Y, Hategan A, Tabus I, Wang Y, et al. Integrated
proteomics and genomics analysis reveals a novel mesenchymal to epithelial
reverting transition in leiomyosarcoma through regulation of slug. Mol Cell
Proteomics. (2010) 9(11):2405–13. doi: 10.1074/mcp.M110.000240

72. Toulmonde M, Lucchesi C, Verbeke S, Crombe A, Adam J, Geneste D, et al.
High throughput profiling of undifferentiated pleomorphic sarcomas identifies two
main subgroups with distinct immune profile, clinical outcome and sensitivity to
targeted therapies. EBioMedicine. (2020) 62:103131. doi: 10.1016/j.ebiom.2020.103131

73. Stewart E, McEvoy J, Wang H, Chen X, Honnell V, Ocarz M, et al. Identification
of therapeutic targets in rhabdomyosarcoma through integrated genomic, epigenomic,
and proteomic analyses. Cancer Cell (2018) 34(3):411–26.e19. doi: 10.1016/
j.ccell.2018.07.012

74. Chaiyawat P, Sungngam P, Teeyakasem P, Sirikaew N, Klangjorhor J, Settakorn
J, et al. Protein profiling of osteosarcoma tissue and soft callus unveils activation of the
unfolded protein response pathway. Int J Oncol (2019) 54(5):1704–18. doi: 10.3892/
ijo.2019.4737

75. Cheng DD, Zhang HZ, Yuan JQ, Li SJ, Yang QC, Fan CY. Minichromosome
maintenance protein 2 and 3 promote osteosarcoma progression viaDHX9 and predict poor
patient prognosis. Oncotarget. (2017) 8(16):26380–93. doi: 10.18632/oncotarget.15474

76. Kubota D, Mukaihara K, Yoshida A, Tsuda H, Kawai A, Kondo T. Proteomics
study of open biopsy samples identifies peroxiredoxin 2 as a predictive biomarker of
response to induction chemotherapy in osteosarcoma. J Proteomics. (2013) 91:393–404.
doi: 10.1016/j.jprot.2013.07.022

77. Kikuta K, Tochigi N, Saito S, Shimoda T, Morioka H, Toyama Y, et al.
Peroxiredoxin 2 as a chemotherapy responsiveness biomarker candidate in
osteosarcoma revealed by proteomics. Proteomics Clin Appl (2010) 4(5):560–7. doi:
10.1002/prca.200900172

78. Hang J, Ouyang H, Wei F, Zhong Q, Yuan W, Jiang L, et al. Proteomics and
phosphoproteomics of chordoma biopsies reveal alterations in multiple pathways and
aberrant kinases activities. Front Oncol (2022) 12:941046. doi: 10.3389/fonc.2022.941046

79. Shen Y, Li M, Xiong Y, Gui S, Bai J, Zhang Y, et al. Proteomics analysis identified
ASNS as a novel biomarker for predicting recurrence of skull base chordoma. Front
Oncol (2021) 11:698497. doi: 10.3389/fonc.2021.698497

80. Zhou H, Chen CB, Lan J, Liu C, Liu XG, Jiang L, et al. Differential proteomic
profiling of chordomas and analysis of prognostic factors. J Surg Oncol (2010) 102
(7):720–7. doi: 10.1002/jso.21674

81. Kikuta K, Tochigi N, Shimoda T, Yabe H, Morioka H, Toyama Y, et al.
Nucleophosmin as a candidate prognostic biomarker of ewing's sarcoma revealed by
proteomics. Clin Cancer Res (2009) 15(8):2885–94. doi: 10.1158/1078-0432.CCR-08-1913

82. Liu Y, Li Z, Xu Z, Jin X, Gong Y, Xia X, et al. Proteomic maps of human
gastrointestinal stromal tumor subgroups. Mol Cell Proteomics. (2019) 18(5):923–35.
doi: 10.1074/mcp.RA119.001361

83. Atay S, Wilkey DW, Milhem M, Merchant M, Godwin AK. Insights into the
proteome of gastrointestinal stromal tumors-derived exosomes reveals new potential
diagnostic biomarkers. Mol Cell Proteomics. (2018) 17(3):495–515. doi: 10.1074/
mcp.RA117.000267

84. Ichikawa H, Yoshida A, Kanda T, Kosugi S, Ishikawa T, Hanyu T, et al.
Prognostic significance of promyelocytic leukemia expression in gastrointestinal
stromal tumor; integrated proteomic and transcriptomic analysis. Cancer Sci (2015)
106(1):115–24. doi: 10.1111/cas.12565

85. Kikuta K, Kubota D, Saito T, Orita H, Yoshida A, Tsuda H, et al. Clinical
proteomics identified ATP-dependent RNA helicase DDX39 as a novel biomarker to
predict poor prognosis of patients with gastrointestinal stromal tumor. J Proteomics.
(2012) 75(4):1089–98. doi: 10.1016/j.jprot.2011.10.005
Frontiers in Oncology 16
86. Da Riva L, Bozzi F, Mondellini P, Micciche F, Fumagalli E, Vaghi E, et al.
Proteomic detection of a large amount of SCGFalpha in the stroma of GISTs after
imatinib therapy. J Transl Med (2011) 9:158. doi: 10.1186/1479-5876-9-158

87. Suehara Y, Kondo T, Seki K, Shibata T, Fujii K, Gotoh M, et al. Pfetin as a
prognostic biomarker of gastrointestinal stromal tumors revealed by proteomics. Clin
Cancer Res (2008) 14(6):1707–17. doi: 10.1158/1078-0432.CCR-07-1478

88. Klemen ND, Hwang S, Bradic M, Rosenbaum E, Dickson MA, Gounder MM,
et al. Long-term follow-up and patterns of response, progression, and hyperprogression
in patients after PD-1 blockade in advanced sarcoma. Clin Cancer Res (2022) 28
(5):939–47. doi: 10.1158/1078-0432.CCR-21-3445

89. Burgess MA, Bolejack V, Schuetze S, Van Tine BA, Attia S, Riedel RF, et al.
Clinical activity of pembrolizumab (P) in undifferentiated pleomorphic sarcoma (UPS)
and dedifferentiated/pleomorphic liposarcoma (LPS): final results of SARC028
expansion cohorts. J Clin Oncol (2019) 37(15_suppl):11015–. doi: 10.1200/
JCO.2019.37.15_suppl.11015

90. Lazcano R, Barreto CM, Salazar R, Carapeto F, Traweek RS, Leung CH, et al. The
immune landscape of undifferentiated pleomorphic sarcoma. Front Oncol (2022) 12.
doi: 10.3389/fonc.2022.1008484

91. Leiner J, Le Loarer F. The current landscape of rhabdomyosarcomas: an update.
Virchows Arch (2020) 476(1):97–108. doi: 10.1007/s00428-019-02676-9

92. Beck AH, Lee CH, Witten DM, Gleason BC, Edris B, Espinosa I, et al. Discovery
of molecular subtypes in leiomyosarcoma through integrative molecular profiling.
Oncogene. (2010) 29(6):845–54. doi: 10.1038/onc.2009.381

93. Anderson ND, Babichev Y, Fuligni F, Comitani F, Layeghifard M, Venier RE,
et al. Lineage-defined leiomyosarcoma subtypes emerge years before diagnosis and
determine patient survival. Nat Commun (2021) 12(1):4496. doi: 10.1038/s41467-021-
24677-6

94. Guo X, Jo VY, Mills AM, Zhu SX, Lee CH, Espinosa I, et al. Clinically relevant
molecular subtypes in leiomyosarcoma. Clin Cancer Res (2015) 21(15):3501–11. doi:
10.1158/1078-0432.CCR-14-3141

95. Chudasama P, Mughal SS, Sanders MA, Hubschmann D, Chung I, Deeg KI,
et al. Integrative genomic and transcriptomic analysis of leiomyosarcoma. Nat
Commun (2018) 9(1):144. doi: 10.1038/s41467-017-02602-0

96. Blay JY, Kang YK, Nishida T, von Mehren M. Gastrointestinal stromal tumours.
Nat Rev Dis Primers. (2021) 7(1):22. doi: 10.1038/s41572-021-00254-5

97. Martin-Broto J, Gutierrez A, Garcia-Del-Muro X, Lopez-Guerrero JA, Martinez-
Trufero J, de Sande LM, et al. Prognostic time dependence of deletions affecting codons
557 and/or 558 of KIT gene for relapse-free survival (RFS) in localized GIST: a Spanish
group for sarcoma research (GEIS) study. Ann Oncol (2010) 21(7):1552–7. doi:
10.1093/annonc/mdq047

98. Kondo T, Suehara Y, Kikuta K, Kubota D, Tajima T, Mukaihara K, et al.
Proteomic approach toward personalized sarcoma treatment: lessons from prognostic
biomarker discovery in gastrointestinal stromal tumor. Proteomics Clin Appl (2013) 7
(1-2):70–8. doi: 10.1002/prca.201200085

99. Kubota D, Orita H, Yoshida A, Gotoh M, Kanda T, Tsuda H, et al. Pfetin as a
prognostic biomarker for gastrointestinal stromal tumor: validation study in multiple
clinical facilities. Jpn J Clin Oncol (2011) 41(10):1194–202. doi: 10.1093/jjco/hyr121

100. Li J, Lu Y, Akbani R, Ju Z, Roebuck PL, Liu W, et al. TCPA: a resource for
cancer functional proteomics data. Nat Methods (2013) 10(11):1046–7. doi: 10.1038/
nmeth.2650

101. Frolov A, Chahwan S, Ochs M, Arnoletti JP, Pan ZZ, Favorova O, et al.
Response markers and the molecular mechanisms of action of gleevec in
gastrointestinal stromal tumors. Mol Cancer Ther (2003) 2(8):699–709.

102. Klaeger S, Heinzlmeir S, Wilhelm M, Polzer H, Vick B, Koenig PA, et al. The
target landscape of clinical kinase drugs. Science (2017) 358(6367):eaan4368. doi:
10.1126/science.aan4368

103. Fordham AM, Ekert PG, Fleuren EDG. Precision medicine and
phosphoproteomics for the identification of novel targeted therapeutic avenues in
sarcomas. Biochim Biophys Acta Rev Cancer. (2021) 1876(2):188613. doi: 10.1016/
j.bbcan.2021.188613

104. Wiechmann S, Ruprecht B, Siekmann T, Zheng R, Frejno M, Kunold E, et al.
Chemical phosphoproteomics sheds new light on the targets and modes of action of
AKT inhibitors. ACS Chem Biol (2021) 16(4):631–41. doi: 10.1021/acschembio.0c00872
frontiersin.org

https://doi.org/10.1016/j.cell.2017.10.014
https://doi.org/10.1002/pmic.201500514
https://doi.org/10.1158/1541-7786.MCR-14-0072
https://doi.org/10.1074/mcp.M110.000240
https://doi.org/10.1016/j.ebiom.2020.103131
https://doi.org/10.1016/j.ccell.2018.07.012
https://doi.org/10.1016/j.ccell.2018.07.012
https://doi.org/10.3892/ijo.2019.4737
https://doi.org/10.3892/ijo.2019.4737
https://doi.org/10.18632/oncotarget.15474
https://doi.org/10.1016/j.jprot.2013.07.022
https://doi.org/10.1002/prca.200900172
https://doi.org/10.3389/fonc.2022.941046
https://doi.org/10.3389/fonc.2021.698497
https://doi.org/10.1002/jso.21674
https://doi.org/10.1158/1078-0432.CCR-08-1913
https://doi.org/10.1074/mcp.RA119.001361
https://doi.org/10.1074/mcp.RA117.000267
https://doi.org/10.1074/mcp.RA117.000267
https://doi.org/10.1111/cas.12565
https://doi.org/10.1016/j.jprot.2011.10.005
https://doi.org/10.1186/1479-5876-9-158
https://doi.org/10.1158/1078-0432.CCR-07-1478
https://doi.org/10.1158/1078-0432.CCR-21-3445
https://doi.org/10.1200/JCO.2019.37.15_suppl.11015
https://doi.org/10.1200/JCO.2019.37.15_suppl.11015
https://doi.org/10.3389/fonc.2022.1008484
https://doi.org/10.1007/s00428-019-02676-9
https://doi.org/10.1038/onc.2009.381
https://doi.org/10.1038/s41467-021-24677-6
https://doi.org/10.1038/s41467-021-24677-6
https://doi.org/10.1158/1078-0432.CCR-14-3141
https://doi.org/10.1038/s41467-017-02602-0
https://doi.org/10.1038/s41572-021-00254-5
https://doi.org/10.1093/annonc/mdq047
https://doi.org/10.1002/prca.201200085
https://doi.org/10.1093/jjco/hyr121
https://doi.org/10.1038/nmeth.2650
https://doi.org/10.1038/nmeth.2650
https://doi.org/10.1126/science.aan4368
https://doi.org/10.1016/j.bbcan.2021.188613
https://doi.org/10.1016/j.bbcan.2021.188613
https://doi.org/10.1021/acschembio.0c00872
https://doi.org/10.3389/fonc.2023.1126736
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Quantitative proteomic studies addressing unmet clinical needs in sarcoma
	1 Background
	2 Approaches to proteomics in sarcoma
	2.1 Proteomic techniques not involving MS
	2.2 MS-based proteomics

	3 Quantitative proteomic studies in sarcoma
	3.1 Distinguish sarcoma histological subtypes and aid diagnosis
	3.2 Identification of distinct profiles within histologic subtypes
	3.2.1 Undifferentiated pleomorphic sarcoma and liposarcoma
	3.2.2 Rhabdomyosarcoma
	3.2.3 Leiomyosarcoma

	3.3 Prognostic proteomic biomarkers
	3.3.1 Gastrointestinal stromal tumor
	3.3.2 Leiomyosarcoma
	3.3.3 Chordoma
	3.3.4 Osteosarcoma
	3.3.5 Ewing sarcoma
	3.3.6 Multi-subtype prognostic analyses

	3.4 Proteomic therapeutic targets and biomarkers
	3.4.1 Therapeutic targets
	3.4.2 Predictive biomarkers


	4 Outstanding questions and future approaches
	5 Conclusions
	Author contributions
	Acknowledgments
	References


